Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283165089> ?p ?o ?g. }
- W4283165089 endingPage "105032" @default.
- W4283165089 startingPage "105032" @default.
- W4283165089 abstract "As it is widely known, several ground services are provided by the airports for the domestic and international flights of the commercial passenger aircraft. Some of these services are conducted during the period called as the turnaround which starts with the parking of the aircraft in the aprons before the flight and ends with their leave from the aprons for the flight. Turnaround processes achieved in short time periods allow using the limited airport resources including the service vehicles and staff effectively. In addition, commercial reputation losses and financial losses that may arise from delays can be reduced as well as the delay-associated turnaround penalties. In this article, a deep learning and computer vision based system that detects and allows monitoring the airport service actions is proposed. The proposed system is capable of analyzing all the primary ground services for an aircraft parking on its apron by employing the RGB video frame sequences obtained from a single fixed camera focusing on the apron. In the service detection and analysis modules of the proposed airport ground service analysis system, some deep learning-based subsystems and in-house-developed algorithms were included and utilized. For the training of the machine learning models, a study-specific dataset was used and the constructed learning models were evaluated on real-life cases. Experimental results obtained as a result of the performance evaluations show that the proposed system is quite successful with precision rates over 90% in the detection and analysis of the airport ground services. This study is one of the limited research studies in which deep learning and computer vision techniques have been applied to detect and analyze the ground service actions. The proposed system is also capable of real-time data processing/analysis and concurrent service action monitoring. Furthermore, it allows monitoring when the service is received by stamping the times of service start/end. In a consideration of industrial relevance or operational perspective, such a system may facilitate the airport ground service management noticeably and reduce the delay-associated costs caused by the timing of the ground services." @default.
- W4283165089 created "2022-06-21" @default.
- W4283165089 creator A5009015729 @default.
- W4283165089 creator A5050464000 @default.
- W4283165089 creator A5051158868 @default.
- W4283165089 creator A5081052966 @default.
- W4283165089 date "2022-09-01" @default.
- W4283165089 modified "2023-10-09" @default.
- W4283165089 title "A turnaround control system to automatically detect and monitor the time stamps of ground service actions in airports: A deep learning and computer vision based approach" @default.
- W4283165089 cites W1578285471 @default.
- W4283165089 cites W1840208138 @default.
- W4283165089 cites W1976718992 @default.
- W4283165089 cites W1990519706 @default.
- W4283165089 cites W1990681647 @default.
- W4283165089 cites W1995903777 @default.
- W4283165089 cites W2003646063 @default.
- W4283165089 cites W2014939815 @default.
- W4283165089 cites W2045725918 @default.
- W4283165089 cites W2070665593 @default.
- W4283165089 cites W2124211486 @default.
- W4283165089 cites W2154889144 @default.
- W4283165089 cites W2242418066 @default.
- W4283165089 cites W2346357836 @default.
- W4283165089 cites W2492875999 @default.
- W4283165089 cites W2618945128 @default.
- W4283165089 cites W2755925876 @default.
- W4283165089 cites W2767302379 @default.
- W4283165089 cites W2901312569 @default.
- W4283165089 cites W2906445168 @default.
- W4283165089 cites W2916048747 @default.
- W4283165089 cites W2923625485 @default.
- W4283165089 cites W2954996726 @default.
- W4283165089 cites W2962949934 @default.
- W4283165089 cites W2966535964 @default.
- W4283165089 cites W3033172120 @default.
- W4283165089 cites W3037353708 @default.
- W4283165089 cites W3080166177 @default.
- W4283165089 cites W3152753009 @default.
- W4283165089 cites W3160411383 @default.
- W4283165089 cites W3183457194 @default.
- W4283165089 cites W3186283217 @default.
- W4283165089 cites W3190647944 @default.
- W4283165089 cites W3197396163 @default.
- W4283165089 cites W3207624916 @default.
- W4283165089 cites W4206023940 @default.
- W4283165089 cites W4210598935 @default.
- W4283165089 cites W639708223 @default.
- W4283165089 doi "https://doi.org/10.1016/j.engappai.2022.105032" @default.
- W4283165089 hasPublicationYear "2022" @default.
- W4283165089 type Work @default.
- W4283165089 citedByCount "6" @default.
- W4283165089 countsByYear W42831650892022 @default.
- W4283165089 countsByYear W42831650892023 @default.
- W4283165089 crossrefType "journal-article" @default.
- W4283165089 hasAuthorship W4283165089A5009015729 @default.
- W4283165089 hasAuthorship W4283165089A5050464000 @default.
- W4283165089 hasAuthorship W4283165089A5051158868 @default.
- W4283165089 hasAuthorship W4283165089A5081052966 @default.
- W4283165089 hasConcept C108583219 @default.
- W4283165089 hasConcept C111919701 @default.
- W4283165089 hasConcept C126042441 @default.
- W4283165089 hasConcept C127413603 @default.
- W4283165089 hasConcept C136264566 @default.
- W4283165089 hasConcept C154945302 @default.
- W4283165089 hasConcept C162324750 @default.
- W4283165089 hasConcept C176553487 @default.
- W4283165089 hasConcept C2780378061 @default.
- W4283165089 hasConcept C41008148 @default.
- W4283165089 hasConcept C42475967 @default.
- W4283165089 hasConcept C44154836 @default.
- W4283165089 hasConcept C76155785 @default.
- W4283165089 hasConcept C79403827 @default.
- W4283165089 hasConceptScore W4283165089C108583219 @default.
- W4283165089 hasConceptScore W4283165089C111919701 @default.
- W4283165089 hasConceptScore W4283165089C126042441 @default.
- W4283165089 hasConceptScore W4283165089C127413603 @default.
- W4283165089 hasConceptScore W4283165089C136264566 @default.
- W4283165089 hasConceptScore W4283165089C154945302 @default.
- W4283165089 hasConceptScore W4283165089C162324750 @default.
- W4283165089 hasConceptScore W4283165089C176553487 @default.
- W4283165089 hasConceptScore W4283165089C2780378061 @default.
- W4283165089 hasConceptScore W4283165089C41008148 @default.
- W4283165089 hasConceptScore W4283165089C42475967 @default.
- W4283165089 hasConceptScore W4283165089C44154836 @default.
- W4283165089 hasConceptScore W4283165089C76155785 @default.
- W4283165089 hasConceptScore W4283165089C79403827 @default.
- W4283165089 hasFunder F4320322626 @default.
- W4283165089 hasLocation W42831650891 @default.
- W4283165089 hasOpenAccess W4283165089 @default.
- W4283165089 hasPrimaryLocation W42831650891 @default.
- W4283165089 hasRelatedWork W1998320603 @default.
- W4283165089 hasRelatedWork W2731899572 @default.
- W4283165089 hasRelatedWork W2939353110 @default.
- W4283165089 hasRelatedWork W3009238340 @default.
- W4283165089 hasRelatedWork W3215138031 @default.
- W4283165089 hasRelatedWork W4298063191 @default.
- W4283165089 hasRelatedWork W4312962853 @default.
- W4283165089 hasRelatedWork W4321369474 @default.