Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283165854> ?p ?o ?g. }
- W4283165854 endingPage "168781322211027" @default.
- W4283165854 startingPage "168781322211027" @default.
- W4283165854 abstract "In this paper, long short-term memory (LSTM) and Transformer neural network models were developed for classification of different conveyor belt conditions (loaded and unloaded). Comparative shallow models such as logistic regression, support vector machine and random forest were also developed and summarized. Six different-length belt pressure signals were analyzed: 0.2, 0.4, 0.8, 1.6, 3.2, and 5.0 s. Both LSTM and Transformer models achieved 100% accuracy using pressure raw signal. Furthermore, LSTM model reached the highest classification level with the shortest signals. Accuracy and F1-score of 98% and 100% were reached using only 0.8 and 1.6 s-length signals, respectively. Also, LSTM model performed training and testing procedures faster than Transformer. Random forest model demonstrated the best classification level using aggregated signal data with accuracy of 85% and F1-score for loaded and unloaded conditions of 85% and 69%, respectively. Loaded conveyor belt condition was significantly easier to classify than the unloaded one in all models. Only LSTM showed better classification recall for unloaded conveyor belt condition using short signal. Experimental research dataset CORBEL (Conveyor belt pressure signal dataset) and models are open-sourced and accessible on GitHub https://github.com/TadasZvirblis/CORBEL ." @default.
- W4283165854 created "2022-06-21" @default.
- W4283165854 creator A5000186302 @default.
- W4283165854 creator A5020569598 @default.
- W4283165854 creator A5034516803 @default.
- W4283165854 creator A5048758259 @default.
- W4283165854 creator A5054645408 @default.
- W4283165854 creator A5059395067 @default.
- W4283165854 creator A5076943060 @default.
- W4283165854 date "2022-06-01" @default.
- W4283165854 modified "2023-09-30" @default.
- W4283165854 title "Investigation of deep learning models on identification of minimum signal length for precise classification of conveyor rubber belt loads" @default.
- W4283165854 cites W2003948114 @default.
- W4283165854 cites W2013903841 @default.
- W4283165854 cites W2022311890 @default.
- W4283165854 cites W2049355243 @default.
- W4283165854 cites W2064675550 @default.
- W4283165854 cites W2185599544 @default.
- W4283165854 cites W2765256428 @default.
- W4283165854 cites W2789702254 @default.
- W4283165854 cites W2793425919 @default.
- W4283165854 cites W2885784805 @default.
- W4283165854 cites W2911964244 @default.
- W4283165854 cites W2932556253 @default.
- W4283165854 cites W2944460315 @default.
- W4283165854 cites W2997916071 @default.
- W4283165854 cites W3003342755 @default.
- W4283165854 cites W3004406662 @default.
- W4283165854 cites W3006192159 @default.
- W4283165854 cites W3011672687 @default.
- W4283165854 cites W3023211159 @default.
- W4283165854 cites W3039608188 @default.
- W4283165854 cites W3091818320 @default.
- W4283165854 cites W3120288547 @default.
- W4283165854 cites W3124524107 @default.
- W4283165854 cites W3131452081 @default.
- W4283165854 cites W3132036977 @default.
- W4283165854 cites W3152311449 @default.
- W4283165854 cites W3173694247 @default.
- W4283165854 cites W3181539743 @default.
- W4283165854 cites W3200704759 @default.
- W4283165854 cites W4226401374 @default.
- W4283165854 doi "https://doi.org/10.1177/16878132221102776" @default.
- W4283165854 hasPublicationYear "2022" @default.
- W4283165854 type Work @default.
- W4283165854 citedByCount "5" @default.
- W4283165854 countsByYear W42831658542022 @default.
- W4283165854 countsByYear W42831658542023 @default.
- W4283165854 crossrefType "journal-article" @default.
- W4283165854 hasAuthorship W4283165854A5000186302 @default.
- W4283165854 hasAuthorship W4283165854A5020569598 @default.
- W4283165854 hasAuthorship W4283165854A5034516803 @default.
- W4283165854 hasAuthorship W4283165854A5048758259 @default.
- W4283165854 hasAuthorship W4283165854A5054645408 @default.
- W4283165854 hasAuthorship W4283165854A5059395067 @default.
- W4283165854 hasAuthorship W4283165854A5076943060 @default.
- W4283165854 hasConcept C119599485 @default.
- W4283165854 hasConcept C119857082 @default.
- W4283165854 hasConcept C12267149 @default.
- W4283165854 hasConcept C127413603 @default.
- W4283165854 hasConcept C151956035 @default.
- W4283165854 hasConcept C153180895 @default.
- W4283165854 hasConcept C154945302 @default.
- W4283165854 hasConcept C165801399 @default.
- W4283165854 hasConcept C169258074 @default.
- W4283165854 hasConcept C199360897 @default.
- W4283165854 hasConcept C2779843651 @default.
- W4283165854 hasConcept C41008148 @default.
- W4283165854 hasConcept C50644808 @default.
- W4283165854 hasConcept C66322947 @default.
- W4283165854 hasConceptScore W4283165854C119599485 @default.
- W4283165854 hasConceptScore W4283165854C119857082 @default.
- W4283165854 hasConceptScore W4283165854C12267149 @default.
- W4283165854 hasConceptScore W4283165854C127413603 @default.
- W4283165854 hasConceptScore W4283165854C151956035 @default.
- W4283165854 hasConceptScore W4283165854C153180895 @default.
- W4283165854 hasConceptScore W4283165854C154945302 @default.
- W4283165854 hasConceptScore W4283165854C165801399 @default.
- W4283165854 hasConceptScore W4283165854C169258074 @default.
- W4283165854 hasConceptScore W4283165854C199360897 @default.
- W4283165854 hasConceptScore W4283165854C2779843651 @default.
- W4283165854 hasConceptScore W4283165854C41008148 @default.
- W4283165854 hasConceptScore W4283165854C50644808 @default.
- W4283165854 hasConceptScore W4283165854C66322947 @default.
- W4283165854 hasIssue "6" @default.
- W4283165854 hasLocation W42831658541 @default.
- W4283165854 hasOpenAccess W4283165854 @default.
- W4283165854 hasPrimaryLocation W42831658541 @default.
- W4283165854 hasRelatedWork W2979979539 @default.
- W4283165854 hasRelatedWork W3137532542 @default.
- W4283165854 hasRelatedWork W3195168932 @default.
- W4283165854 hasRelatedWork W4246246790 @default.
- W4283165854 hasRelatedWork W4281846282 @default.
- W4283165854 hasRelatedWork W4285237370 @default.
- W4283165854 hasRelatedWork W4286744707 @default.
- W4283165854 hasRelatedWork W4312707991 @default.
- W4283165854 hasRelatedWork W4321636153 @default.
- W4283165854 hasRelatedWork W4377964522 @default.