Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283171569> ?p ?o ?g. }
- W4283171569 abstract "Understanding the function of microbial proteins is essential to reveal the clinical potential of the microbiome. The application of high-throughput sequencing technologies allows for fast and increasingly cheaper acquisition of data from microbial communities. However, many of the inferred protein sequences are novel and not catalogued, hence the possibility of predicting their function through conventional homology-based approaches is limited, which indicates the need for further research on alignment-free methods. Here, we leverage a deep-learning-based representation of proteins to assess its utility in alignment-free analysis of microbial proteins. We trained a language model on the Unified Human Gastrointestinal Protein catalogue and validated the resulting protein representation on the bacterial part of the SwissProt database. Finally, we present a use case on proteins involved in SCFA metabolism. Results indicate that the deep learning model manages to accurately represent features related to protein structure and function, allowing for alignment-free protein analyses. Technologies that contextualize metagenomic data are a promising direction to deeply understand the microbiome." @default.
- W4283171569 created "2022-06-21" @default.
- W4283171569 creator A5000784857 @default.
- W4283171569 creator A5013923342 @default.
- W4283171569 creator A5032142656 @default.
- W4283171569 creator A5046691048 @default.
- W4283171569 creator A5063631992 @default.
- W4283171569 creator A5084827722 @default.
- W4283171569 date "2022-06-20" @default.
- W4283171569 modified "2023-10-01" @default.
- W4283171569 title "Deep embeddings to comprehend and visualize microbiome protein space" @default.
- W4283171569 cites W1972340877 @default.
- W4283171569 cites W1981500982 @default.
- W4283171569 cites W1988581590 @default.
- W4283171569 cites W2039598219 @default.
- W4283171569 cites W2055043387 @default.
- W4283171569 cites W2085284704 @default.
- W4283171569 cites W2103017472 @default.
- W4283171569 cites W2111973517 @default.
- W4283171569 cites W2113679889 @default.
- W4283171569 cites W2114315281 @default.
- W4283171569 cites W2114850508 @default.
- W4283171569 cites W2117486996 @default.
- W4283171569 cites W2120772351 @default.
- W4283171569 cites W2122369731 @default.
- W4283171569 cites W2127322768 @default.
- W4283171569 cites W2132801908 @default.
- W4283171569 cites W2137597742 @default.
- W4283171569 cites W2143485490 @default.
- W4283171569 cites W2149573313 @default.
- W4283171569 cites W2173591891 @default.
- W4283171569 cites W2276854519 @default.
- W4283171569 cites W2341234495 @default.
- W4283171569 cites W2502949459 @default.
- W4283171569 cites W2564618384 @default.
- W4283171569 cites W2615066396 @default.
- W4283171569 cites W2750791471 @default.
- W4283171569 cites W2766352633 @default.
- W4283171569 cites W2807818025 @default.
- W4283171569 cites W2882018707 @default.
- W4283171569 cites W2888258099 @default.
- W4283171569 cites W2889326414 @default.
- W4283171569 cites W2896617742 @default.
- W4283171569 cites W2898402099 @default.
- W4283171569 cites W2902652978 @default.
- W4283171569 cites W2903406988 @default.
- W4283171569 cites W2904950674 @default.
- W4283171569 cites W2908663744 @default.
- W4283171569 cites W2913620138 @default.
- W4283171569 cites W2917341168 @default.
- W4283171569 cites W2919115771 @default.
- W4283171569 cites W2920009718 @default.
- W4283171569 cites W2921966151 @default.
- W4283171569 cites W2941981307 @default.
- W4283171569 cites W2943203634 @default.
- W4283171569 cites W2945297971 @default.
- W4283171569 cites W2947189704 @default.
- W4283171569 cites W2950954328 @default.
- W4283171569 cites W2952710849 @default.
- W4283171569 cites W2953008890 @default.
- W4283171569 cites W2963890696 @default.
- W4283171569 cites W2966590054 @default.
- W4283171569 cites W2968334948 @default.
- W4283171569 cites W2971227267 @default.
- W4283171569 cites W2971930247 @default.
- W4283171569 cites W2980272550 @default.
- W4283171569 cites W2980789587 @default.
- W4283171569 cites W2989608901 @default.
- W4283171569 cites W2995010141 @default.
- W4283171569 cites W2995514860 @default.
- W4283171569 cites W2999044305 @default.
- W4283171569 cites W3003790283 @default.
- W4283171569 cites W3010387158 @default.
- W4283171569 cites W3042305844 @default.
- W4283171569 cites W3049692992 @default.
- W4283171569 cites W3095583226 @default.
- W4283171569 cites W3104021605 @default.
- W4283171569 cites W3111174583 @default.
- W4283171569 cites W3114115943 @default.
- W4283171569 cites W3116435043 @default.
- W4283171569 cites W3118936575 @default.
- W4283171569 cites W3138215020 @default.
- W4283171569 cites W3145289798 @default.
- W4283171569 cites W3146944767 @default.
- W4283171569 cites W3150945973 @default.
- W4283171569 cites W3164046276 @default.
- W4283171569 cites W3177500196 @default.
- W4283171569 cites W3177828909 @default.
- W4283171569 cites W3198923619 @default.
- W4283171569 cites W3199799076 @default.
- W4283171569 cites W4213112325 @default.
- W4283171569 cites W4236358448 @default.
- W4283171569 cites W4242765109 @default.
- W4283171569 cites W4280524269 @default.
- W4283171569 doi "https://doi.org/10.1038/s41598-022-14055-7" @default.
- W4283171569 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35725732" @default.
- W4283171569 hasPublicationYear "2022" @default.
- W4283171569 type Work @default.
- W4283171569 citedByCount "4" @default.
- W4283171569 countsByYear W42831715692022 @default.