Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283203971> ?p ?o ?g. }
- W4283203971 endingPage "499" @default.
- W4283203971 startingPage "481" @default.
- W4283203971 abstract "Abstract Collaborative robotic systems will be a key enabling technology for current and future industrial applications. The main aspect of such applications is to guarantee safety for humans. To detect hazardous situations, current commercially available robotic systems rely on direct physical contact to the co‐working person. To further advance this technology, there are multiple efforts to develop predictive capabilities for such systems. Using motion tracking sensors and pose estimation systems combined with adequate predictive models, potential episodes of hazardous collisions between humans and robots can be predicted. Based on the provided predictive information, the robotic system can avoid physical contact by adjusting speed or position. A potential approach for such systems is to perform human motion prediction with machine learning methods like artificial neural networks (NNs). In our approach, the motion patterns of past seconds are used to predict future ones by applying a linear Tensor‐on‐Tensor Regression model, selected according to a similarity measure between motion sequences obtained by dynamic time warping (DTW). For test and validation of our proposed approach, industrial pseudo assembly tasks were recorded with a motion capture system, providing unique traceable Cartesian coordinates for each human joint. The prediction of repetitive human motions associated with assembly tasks, whose data vary significantly in length and have highly correlated variables, has been achieved in real time." @default.
- W4283203971 created "2022-06-22" @default.
- W4283203971 creator A5021063658 @default.
- W4283203971 creator A5049066840 @default.
- W4283203971 creator A5053123958 @default.
- W4283203971 creator A5088859456 @default.
- W4283203971 date "2022-06-21" @default.
- W4283203971 modified "2023-10-14" @default.
- W4283203971 title "A Tensor‐based Regression Approach for Human Motion Prediction" @default.
- W4283203971 cites W1967696752 @default.
- W4283203971 cites W1968932325 @default.
- W4283203971 cites W1985100786 @default.
- W4283203971 cites W2000215628 @default.
- W4283203971 cites W2013912476 @default.
- W4283203971 cites W2024165284 @default.
- W4283203971 cites W2101032778 @default.
- W4283203971 cites W2107092366 @default.
- W4283203971 cites W2136002544 @default.
- W4283203971 cites W2157938685 @default.
- W4283203971 cites W2158268505 @default.
- W4283203971 cites W2400648685 @default.
- W4283203971 cites W2404400936 @default.
- W4283203971 cites W2554480015 @default.
- W4283203971 cites W2559085405 @default.
- W4283203971 cites W2562279995 @default.
- W4283203971 cites W2569250433 @default.
- W4283203971 cites W2613864254 @default.
- W4283203971 cites W2789905221 @default.
- W4283203971 cites W2792411115 @default.
- W4283203971 cites W2805209921 @default.
- W4283203971 cites W2891058410 @default.
- W4283203971 cites W2908684875 @default.
- W4283203971 cites W2922555044 @default.
- W4283203971 cites W2953605080 @default.
- W4283203971 cites W2963225971 @default.
- W4283203971 cites W2964203186 @default.
- W4283203971 cites W2970739974 @default.
- W4283203971 cites W2973970174 @default.
- W4283203971 cites W2976484526 @default.
- W4283203971 cites W2980207654 @default.
- W4283203971 cites W2985871763 @default.
- W4283203971 cites W2996701534 @default.
- W4283203971 cites W3009669038 @default.
- W4283203971 cites W3035581100 @default.
- W4283203971 cites W3100139459 @default.
- W4283203971 cites W3101749708 @default.
- W4283203971 cites W3106376083 @default.
- W4283203971 cites W3108664802 @default.
- W4283203971 cites W3117099639 @default.
- W4283203971 cites W3117945726 @default.
- W4283203971 cites W3127698310 @default.
- W4283203971 cites W3131400583 @default.
- W4283203971 cites W3175335528 @default.
- W4283203971 cites W3199567699 @default.
- W4283203971 doi "https://doi.org/10.1002/qre.3153" @default.
- W4283203971 hasPublicationYear "2022" @default.
- W4283203971 type Work @default.
- W4283203971 citedByCount "1" @default.
- W4283203971 countsByYear W42832039712023 @default.
- W4283203971 crossrefType "journal-article" @default.
- W4283203971 hasAuthorship W4283203971A5021063658 @default.
- W4283203971 hasAuthorship W4283203971A5049066840 @default.
- W4283203971 hasAuthorship W4283203971A5053123958 @default.
- W4283203971 hasAuthorship W4283203971A5088859456 @default.
- W4283203971 hasBestOaLocation W42832039712 @default.
- W4283203971 hasConcept C104114177 @default.
- W4283203971 hasConcept C119857082 @default.
- W4283203971 hasConcept C124101348 @default.
- W4283203971 hasConcept C154945302 @default.
- W4283203971 hasConcept C31972630 @default.
- W4283203971 hasConcept C41008148 @default.
- W4283203971 hasConcept C48007421 @default.
- W4283203971 hasConcept C50644808 @default.
- W4283203971 hasConcept C88516994 @default.
- W4283203971 hasConceptScore W4283203971C104114177 @default.
- W4283203971 hasConceptScore W4283203971C119857082 @default.
- W4283203971 hasConceptScore W4283203971C124101348 @default.
- W4283203971 hasConceptScore W4283203971C154945302 @default.
- W4283203971 hasConceptScore W4283203971C31972630 @default.
- W4283203971 hasConceptScore W4283203971C41008148 @default.
- W4283203971 hasConceptScore W4283203971C48007421 @default.
- W4283203971 hasConceptScore W4283203971C50644808 @default.
- W4283203971 hasConceptScore W4283203971C88516994 @default.
- W4283203971 hasIssue "2" @default.
- W4283203971 hasLocation W42832039711 @default.
- W4283203971 hasLocation W42832039712 @default.
- W4283203971 hasOpenAccess W4283203971 @default.
- W4283203971 hasPrimaryLocation W42832039711 @default.
- W4283203971 hasRelatedWork W1827696521 @default.
- W4283203971 hasRelatedWork W1996800738 @default.
- W4283203971 hasRelatedWork W2006196742 @default.
- W4283203971 hasRelatedWork W2039848376 @default.
- W4283203971 hasRelatedWork W2055991023 @default.
- W4283203971 hasRelatedWork W2089042722 @default.
- W4283203971 hasRelatedWork W2091722187 @default.
- W4283203971 hasRelatedWork W2130272765 @default.
- W4283203971 hasRelatedWork W2173450654 @default.
- W4283203971 hasRelatedWork W2621720158 @default.