Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283204791> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4283204791 abstract "Recent years witnessed an increasing research attention in deploying deep learning models on edge devices for inference. Due to limited capabilities and power constraints, it may be necessary to distribute the inference workload across multiple devices. Existing mechanisms divided the model across edge devices with the assumption that deep learning models are constructed with a chain of layers. In reality, however, modern deep learning models are more complex, involving a directed acyclic graph (DAG) rather than a chain of layers.In this paper, we present EdgeFlow, a new distributed inference mechanism designed for general DAG structured deep learning models. Specifically, EdgeFlow partitions model layers into independent execution units with a new progressive model partitioning algorithm. By producing near-optimal model partitions, our new algorithm seeks to improve the run-time performance of distributed inference as these partitions are distributed across the edge devices. During inference, EdgeFlow orchestrates the intermediate results flowing through these units to fulfill the complicated layer dependencies. We have implemented Edge-Flow based on PyTorch, and evaluated it with state-of-the-art deep learning models in different structures. The results show that EdgeFlow reducing the inference latency by up to 40.2% compared with other approaches, which demonstrates the effectiveness of our design." @default.
- W4283204791 created "2022-06-22" @default.
- W4283204791 creator A5078809003 @default.
- W4283204791 creator A5083596391 @default.
- W4283204791 date "2022-05-02" @default.
- W4283204791 modified "2023-10-03" @default.
- W4283204791 title "Distributed Inference with Deep Learning Models across Heterogeneous Edge Devices" @default.
- W4283204791 cites W2194775991 @default.
- W4283204791 cites W2546536770 @default.
- W4283204791 cites W2612193523 @default.
- W4283204791 cites W2896180420 @default.
- W4283204791 cites W2920031528 @default.
- W4283204791 cites W2949628230 @default.
- W4283204791 cites W2960833983 @default.
- W4283204791 cites W2963857746 @default.
- W4283204791 cites W2964223234 @default.
- W4283204791 cites W2964227007 @default.
- W4283204791 cites W2980856918 @default.
- W4283204791 cites W2983440318 @default.
- W4283204791 cites W3005276590 @default.
- W4283204791 cites W3110777925 @default.
- W4283204791 cites W3130823781 @default.
- W4283204791 cites W4236099117 @default.
- W4283204791 cites W4244894343 @default.
- W4283204791 doi "https://doi.org/10.1109/infocom48880.2022.9796896" @default.
- W4283204791 hasPublicationYear "2022" @default.
- W4283204791 type Work @default.
- W4283204791 citedByCount "6" @default.
- W4283204791 countsByYear W42832047912023 @default.
- W4283204791 crossrefType "proceedings-article" @default.
- W4283204791 hasAuthorship W4283204791A5078809003 @default.
- W4283204791 hasAuthorship W4283204791A5083596391 @default.
- W4283204791 hasConcept C108583219 @default.
- W4283204791 hasConcept C111919701 @default.
- W4283204791 hasConcept C11413529 @default.
- W4283204791 hasConcept C119857082 @default.
- W4283204791 hasConcept C138236772 @default.
- W4283204791 hasConcept C154945302 @default.
- W4283204791 hasConcept C162307627 @default.
- W4283204791 hasConcept C2776214188 @default.
- W4283204791 hasConcept C2777472644 @default.
- W4283204791 hasConcept C41008148 @default.
- W4283204791 hasConcept C74197172 @default.
- W4283204791 hasConcept C79974875 @default.
- W4283204791 hasConcept C80444323 @default.
- W4283204791 hasConceptScore W4283204791C108583219 @default.
- W4283204791 hasConceptScore W4283204791C111919701 @default.
- W4283204791 hasConceptScore W4283204791C11413529 @default.
- W4283204791 hasConceptScore W4283204791C119857082 @default.
- W4283204791 hasConceptScore W4283204791C138236772 @default.
- W4283204791 hasConceptScore W4283204791C154945302 @default.
- W4283204791 hasConceptScore W4283204791C162307627 @default.
- W4283204791 hasConceptScore W4283204791C2776214188 @default.
- W4283204791 hasConceptScore W4283204791C2777472644 @default.
- W4283204791 hasConceptScore W4283204791C41008148 @default.
- W4283204791 hasConceptScore W4283204791C74197172 @default.
- W4283204791 hasConceptScore W4283204791C79974875 @default.
- W4283204791 hasConceptScore W4283204791C80444323 @default.
- W4283204791 hasLocation W42832047911 @default.
- W4283204791 hasOpenAccess W4283204791 @default.
- W4283204791 hasPrimaryLocation W42832047911 @default.
- W4283204791 hasRelatedWork W3014300295 @default.
- W4283204791 hasRelatedWork W3164822677 @default.
- W4283204791 hasRelatedWork W4223943233 @default.
- W4283204791 hasRelatedWork W4225161397 @default.
- W4283204791 hasRelatedWork W4283204791 @default.
- W4283204791 hasRelatedWork W4312200629 @default.
- W4283204791 hasRelatedWork W4360585206 @default.
- W4283204791 hasRelatedWork W4364306694 @default.
- W4283204791 hasRelatedWork W4380075502 @default.
- W4283204791 hasRelatedWork W4380086463 @default.
- W4283204791 isParatext "false" @default.
- W4283204791 isRetracted "false" @default.
- W4283204791 workType "article" @default.