Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283206957> ?p ?o ?g. }
- W4283206957 abstract "Methods to accurately quantify disease severity are fundamental to plant pathogen interaction studies. Commonly used methods include visual scoring of disease symptoms, tracking pathogen growth in planta over time, and various assays that detect plant defense responses. Several image-based methods for phenotyping of plant disease symptoms have also been developed. Each of these methods has different advantages and limitations which should be carefully considered when choosing an approach and interpreting the results.In this paper, we developed two image analysis methods and tested their ability to quantify different aspects of disease lesions in the cassava-Xanthomonas pathosystem. The first method uses ImageJ, an open-source platform widely used in the biological sciences. The second method is a few-shot support vector machine learning tool that uses a classifier file trained with five representative infected leaf images for lesion recognition. Cassava leaves were syringe infiltrated with wildtype Xanthomonas, a Xanthomonas mutant with decreased virulence, and mock treatments. Digital images of infected leaves were captured overtime using a Raspberry Pi camera. The image analysis methods were analyzed and compared for the ability to segment the lesion from the background and accurately capture and measure differences between the treatment types.Both image analysis methods presented in this paper allow for accurate segmentation of disease lesions from the non-infected plant. Specifically, at 4-, 6-, and 9-days post inoculation (DPI), both methods provided quantitative differences in disease symptoms between different treatment types. Thus, either method could be applied to extract information about disease severity. Strengths and weaknesses of each approach are discussed." @default.
- W4283206957 created "2022-06-22" @default.
- W4283206957 creator A5022397717 @default.
- W4283206957 creator A5052034932 @default.
- W4283206957 creator A5065129908 @default.
- W4283206957 creator A5065402635 @default.
- W4283206957 date "2022-06-21" @default.
- W4283206957 modified "2023-10-14" @default.
- W4283206957 title "A comparison of ImageJ and machine learning based image analysis methods to measure cassava bacterial blight disease severity" @default.
- W4283206957 cites W1524241924 @default.
- W4283206957 cites W1788531970 @default.
- W4283206957 cites W1981059904 @default.
- W4283206957 cites W1984857675 @default.
- W4283206957 cites W1992017941 @default.
- W4283206957 cites W1998686312 @default.
- W4283206957 cites W2004914588 @default.
- W4283206957 cites W2037186755 @default.
- W4283206957 cites W2073754472 @default.
- W4283206957 cites W2100001046 @default.
- W4283206957 cites W2110345291 @default.
- W4283206957 cites W2128113924 @default.
- W4283206957 cites W2130931930 @default.
- W4283206957 cites W2142150660 @default.
- W4283206957 cites W2163891490 @default.
- W4283206957 cites W2166988197 @default.
- W4283206957 cites W2167279371 @default.
- W4283206957 cites W2169768163 @default.
- W4283206957 cites W2180827523 @default.
- W4283206957 cites W2185489349 @default.
- W4283206957 cites W2301371373 @default.
- W4283206957 cites W2313215855 @default.
- W4283206957 cites W2508888816 @default.
- W4283206957 cites W2541344361 @default.
- W4283206957 cites W2566918653 @default.
- W4283206957 cites W2613469671 @default.
- W4283206957 cites W2619669612 @default.
- W4283206957 cites W2619771215 @default.
- W4283206957 cites W2752728932 @default.
- W4283206957 cites W2773117068 @default.
- W4283206957 cites W2782766243 @default.
- W4283206957 cites W2785818257 @default.
- W4283206957 cites W2901455054 @default.
- W4283206957 cites W2923504698 @default.
- W4283206957 cites W2949765995 @default.
- W4283206957 cites W2952772651 @default.
- W4283206957 cites W2969584825 @default.
- W4283206957 cites W3086486534 @default.
- W4283206957 cites W3100359022 @default.
- W4283206957 cites W3100931193 @default.
- W4283206957 cites W3177645065 @default.
- W4283206957 cites W3193905861 @default.
- W4283206957 cites W4244441825 @default.
- W4283206957 cites W4249300730 @default.
- W4283206957 doi "https://doi.org/10.1186/s13007-022-00906-x" @default.
- W4283206957 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35729628" @default.
- W4283206957 hasPublicationYear "2022" @default.
- W4283206957 type Work @default.
- W4283206957 citedByCount "7" @default.
- W4283206957 countsByYear W42832069572023 @default.
- W4283206957 crossrefType "journal-article" @default.
- W4283206957 hasAuthorship W4283206957A5022397717 @default.
- W4283206957 hasAuthorship W4283206957A5052034932 @default.
- W4283206957 hasAuthorship W4283206957A5065129908 @default.
- W4283206957 hasAuthorship W4283206957A5065402635 @default.
- W4283206957 hasBestOaLocation W42832069571 @default.
- W4283206957 hasConcept C115961682 @default.
- W4283206957 hasConcept C150903083 @default.
- W4283206957 hasConcept C153180895 @default.
- W4283206957 hasConcept C154945302 @default.
- W4283206957 hasConcept C182076605 @default.
- W4283206957 hasConcept C23209589 @default.
- W4283206957 hasConcept C2776460866 @default.
- W4283206957 hasConcept C2780746887 @default.
- W4283206957 hasConcept C3019235130 @default.
- W4283206957 hasConcept C31972630 @default.
- W4283206957 hasConcept C41008148 @default.
- W4283206957 hasConcept C523546767 @default.
- W4283206957 hasConcept C54355233 @default.
- W4283206957 hasConcept C6557445 @default.
- W4283206957 hasConcept C86803240 @default.
- W4283206957 hasConcept C89423630 @default.
- W4283206957 hasConcept C89600930 @default.
- W4283206957 hasConcept C9417928 @default.
- W4283206957 hasConceptScore W4283206957C115961682 @default.
- W4283206957 hasConceptScore W4283206957C150903083 @default.
- W4283206957 hasConceptScore W4283206957C153180895 @default.
- W4283206957 hasConceptScore W4283206957C154945302 @default.
- W4283206957 hasConceptScore W4283206957C182076605 @default.
- W4283206957 hasConceptScore W4283206957C23209589 @default.
- W4283206957 hasConceptScore W4283206957C2776460866 @default.
- W4283206957 hasConceptScore W4283206957C2780746887 @default.
- W4283206957 hasConceptScore W4283206957C3019235130 @default.
- W4283206957 hasConceptScore W4283206957C31972630 @default.
- W4283206957 hasConceptScore W4283206957C41008148 @default.
- W4283206957 hasConceptScore W4283206957C523546767 @default.
- W4283206957 hasConceptScore W4283206957C54355233 @default.
- W4283206957 hasConceptScore W4283206957C6557445 @default.
- W4283206957 hasConceptScore W4283206957C86803240 @default.
- W4283206957 hasConceptScore W4283206957C89423630 @default.
- W4283206957 hasConceptScore W4283206957C89600930 @default.