Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283208181> ?p ?o ?g. }
- W4283208181 endingPage "218" @default.
- W4283208181 startingPage "218" @default.
- W4283208181 abstract "Machine Learning (ML) offers new precision technologies with intelligent algorithms and robust computation. This technology benefits various agricultural industries, such as the palm oil sector, which possesses one of the most sustainable industries worldwide. Hence, an in-depth analysis was conducted, which is derived from previous research on ML utilisation in the palm oil in-dustry. The study provided a brief overview of widely used features and prediction algorithms and critically analysed current the state of ML-based palm oil prediction. This analysis is extended to the ML application in the palm oil industry and a comparison of related studies. The analysis was predicated on thoroughly examining the advantages and disadvantages of ML-based palm oil prediction and the proper identification of current and future agricultural industry challenges. Potential solutions for palm oil prediction were added to this list. Artificial intelligence and ma-chine vision were used to develop intelligent systems, revolutionising the palm oil industry. Overall, this article provided a framework for future research in the palm oil agricultural industry by highlighting the importance of ML." @default.
- W4283208181 created "2022-06-22" @default.
- W4283208181 creator A5000258092 @default.
- W4283208181 creator A5006203396 @default.
- W4283208181 creator A5016903964 @default.
- W4283208181 creator A5049313353 @default.
- W4283208181 creator A5051571958 @default.
- W4283208181 creator A5075049548 @default.
- W4283208181 date "2022-06-20" @default.
- W4283208181 modified "2023-09-26" @default.
- W4283208181 title "A Review of an Artificial Intelligence Framework for Identifying the Most Effective Palm Oil Prediction" @default.
- W4283208181 cites W1693171120 @default.
- W4283208181 cites W1979063965 @default.
- W4283208181 cites W1991041654 @default.
- W4283208181 cites W2019035748 @default.
- W4283208181 cites W2028789920 @default.
- W4283208181 cites W2084714454 @default.
- W4283208181 cites W2097706568 @default.
- W4283208181 cites W2139086914 @default.
- W4283208181 cites W2152944872 @default.
- W4283208181 cites W2156859150 @default.
- W4283208181 cites W2190926082 @default.
- W4283208181 cites W2197519127 @default.
- W4283208181 cites W2292175679 @default.
- W4283208181 cites W2339235356 @default.
- W4283208181 cites W2401246392 @default.
- W4283208181 cites W2508941388 @default.
- W4283208181 cites W2523623379 @default.
- W4283208181 cites W2526688595 @default.
- W4283208181 cites W2565950292 @default.
- W4283208181 cites W2589106916 @default.
- W4283208181 cites W2594186852 @default.
- W4283208181 cites W2599757587 @default.
- W4283208181 cites W2602428279 @default.
- W4283208181 cites W2610459973 @default.
- W4283208181 cites W2619010833 @default.
- W4283208181 cites W2619415841 @default.
- W4283208181 cites W2621248606 @default.
- W4283208181 cites W2729921439 @default.
- W4283208181 cites W2734421838 @default.
- W4283208181 cites W2782323733 @default.
- W4283208181 cites W2789268666 @default.
- W4283208181 cites W2790729546 @default.
- W4283208181 cites W2790979755 @default.
- W4283208181 cites W2792230618 @default.
- W4283208181 cites W2796440484 @default.
- W4283208181 cites W2805142011 @default.
- W4283208181 cites W2809195970 @default.
- W4283208181 cites W2809577195 @default.
- W4283208181 cites W2809605691 @default.
- W4283208181 cites W2885197979 @default.
- W4283208181 cites W2887249537 @default.
- W4283208181 cites W2888096590 @default.
- W4283208181 cites W2890810908 @default.
- W4283208181 cites W2890834826 @default.
- W4283208181 cites W2891195071 @default.
- W4283208181 cites W2891765392 @default.
- W4283208181 cites W2896442213 @default.
- W4283208181 cites W2898053039 @default.
- W4283208181 cites W2899712495 @default.
- W4283208181 cites W2900156614 @default.
- W4283208181 cites W2903637287 @default.
- W4283208181 cites W2907475761 @default.
- W4283208181 cites W2909617227 @default.
- W4283208181 cites W2916344091 @default.
- W4283208181 cites W2917298881 @default.
- W4283208181 cites W2920905333 @default.
- W4283208181 cites W2925038876 @default.
- W4283208181 cites W2940827091 @default.
- W4283208181 cites W2942796602 @default.
- W4283208181 cites W2943024341 @default.
- W4283208181 cites W2944794516 @default.
- W4283208181 cites W2945600159 @default.
- W4283208181 cites W2950830239 @default.
- W4283208181 cites W2953578406 @default.
- W4283208181 cites W2953717279 @default.
- W4283208181 cites W2969691610 @default.
- W4283208181 cites W2972554546 @default.
- W4283208181 cites W2973477346 @default.
- W4283208181 cites W2975292652 @default.
- W4283208181 cites W2980519565 @default.
- W4283208181 cites W2981508914 @default.
- W4283208181 cites W2981825565 @default.
- W4283208181 cites W2992413855 @default.
- W4283208181 cites W2997068971 @default.
- W4283208181 cites W2997941179 @default.
- W4283208181 cites W2999452933 @default.
- W4283208181 cites W3002582828 @default.
- W4283208181 cites W3010271066 @default.
- W4283208181 cites W3011026289 @default.
- W4283208181 cites W3014828671 @default.
- W4283208181 cites W3016735559 @default.
- W4283208181 cites W3020248043 @default.
- W4283208181 cites W3028965560 @default.
- W4283208181 cites W3035423599 @default.
- W4283208181 cites W3037618930 @default.
- W4283208181 cites W3043834980 @default.
- W4283208181 cites W3045041747 @default.