Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283209789> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4283209789 endingPage "A580" @default.
- W4283209789 startingPage "A580" @default.
- W4283209789 abstract "TYPE: Late Breaking Abstract TOPIC: Lung Pathology PURPOSE: Comparison of three different AI-based software for quantification of lung parenchyma affected on Covid-19 parients METHODS: This double-center study includes 120 COVID-19 patients (60 from each center) with positive reverse-transcription polymerase chain reaction (RT-PCR) who underwent a chest CT scan from November 2020 to February 2021. CT scans were analyzed retrospectively and independently in each center. CT scans were examined by two different Radiologists for each center, providing the qualitative score of lung involvement, whereas the quantitative analysis was performed by one trained Radiographer for each center using three different software: 3DSlicer, CT Lung Density Analysis and CT Pulmo 3D RESULTS: The agreement between Radiologists for visual estimation of pneumonia at CT was good (ICC 0.79, 95% CI 0,73-0,84). 3DSlicer had an over-esteem of the measures assessed, however ICC index returned a value of 0.92 (CI 0,90-0,94), indicating an excellent reliability within the three software employed. The ICC was performed between each single software and the median of the visual score provided by the Radiologists. The best agreement was between 3DSlicer and the median of the visual score (0.75 with a CI 0,67 - 0,82 and with a median value of 22% of disease extension for the software and 25% the visual values). CONCLUSIONS: Visual and software results correlate positively and 3D slicer is the one that predominantly fitted the Radiologists scores. Additionally, AI-based lung segmentation’s inter-software output correlation is even stronger and they all were found to overestimate the amount of lung parenchyma involved in comparison of visual score. CLINICAL IMPLICATIONS: Clinical management DISCLOSURE: No significant relationships. KEYWORD: Artificial Intelligence" @default.
- W4283209789 created "2022-06-22" @default.
- W4283209789 creator A5008090699 @default.
- W4283209789 creator A5008553080 @default.
- W4283209789 creator A5021961997 @default.
- W4283209789 creator A5023134577 @default.
- W4283209789 creator A5034885398 @default.
- W4283209789 creator A5043287538 @default.
- W4283209789 creator A5061380712 @default.
- W4283209789 creator A5071295792 @default.
- W4283209789 creator A5083809946 @default.
- W4283209789 creator A5084591215 @default.
- W4283209789 date "2022-06-01" @default.
- W4283209789 modified "2023-10-18" @default.
- W4283209789 title "COMPARISON OF THREE DIFFERENT AI-BASED SOFTWARE FOR QUANTIFICATION OF LUNG PARENCHYMA IN PATIENTS WITH COVID-19" @default.
- W4283209789 doi "https://doi.org/10.1016/j.chest.2022.04.114" @default.
- W4283209789 hasPublicationYear "2022" @default.
- W4283209789 type Work @default.
- W4283209789 citedByCount "0" @default.
- W4283209789 crossrefType "journal-article" @default.
- W4283209789 hasAuthorship W4283209789A5008090699 @default.
- W4283209789 hasAuthorship W4283209789A5008553080 @default.
- W4283209789 hasAuthorship W4283209789A5021961997 @default.
- W4283209789 hasAuthorship W4283209789A5023134577 @default.
- W4283209789 hasAuthorship W4283209789A5034885398 @default.
- W4283209789 hasAuthorship W4283209789A5043287538 @default.
- W4283209789 hasAuthorship W4283209789A5061380712 @default.
- W4283209789 hasAuthorship W4283209789A5071295792 @default.
- W4283209789 hasAuthorship W4283209789A5083809946 @default.
- W4283209789 hasAuthorship W4283209789A5084591215 @default.
- W4283209789 hasBestOaLocation W42832097892 @default.
- W4283209789 hasConcept C126322002 @default.
- W4283209789 hasConcept C126838900 @default.
- W4283209789 hasConcept C141071460 @default.
- W4283209789 hasConcept C142724271 @default.
- W4283209789 hasConcept C196822366 @default.
- W4283209789 hasConcept C2777714996 @default.
- W4283209789 hasConcept C2779134260 @default.
- W4283209789 hasConcept C2780073493 @default.
- W4283209789 hasConcept C2989005 @default.
- W4283209789 hasConcept C3008058167 @default.
- W4283209789 hasConcept C524204448 @default.
- W4283209789 hasConcept C71924100 @default.
- W4283209789 hasConceptScore W4283209789C126322002 @default.
- W4283209789 hasConceptScore W4283209789C126838900 @default.
- W4283209789 hasConceptScore W4283209789C141071460 @default.
- W4283209789 hasConceptScore W4283209789C142724271 @default.
- W4283209789 hasConceptScore W4283209789C196822366 @default.
- W4283209789 hasConceptScore W4283209789C2777714996 @default.
- W4283209789 hasConceptScore W4283209789C2779134260 @default.
- W4283209789 hasConceptScore W4283209789C2780073493 @default.
- W4283209789 hasConceptScore W4283209789C2989005 @default.
- W4283209789 hasConceptScore W4283209789C3008058167 @default.
- W4283209789 hasConceptScore W4283209789C524204448 @default.
- W4283209789 hasConceptScore W4283209789C71924100 @default.
- W4283209789 hasIssue "6" @default.
- W4283209789 hasLocation W42832097891 @default.
- W4283209789 hasLocation W42832097892 @default.
- W4283209789 hasOpenAccess W4283209789 @default.
- W4283209789 hasPrimaryLocation W42832097891 @default.
- W4283209789 hasRelatedWork W1534331105 @default.
- W4283209789 hasRelatedWork W2031595437 @default.
- W4283209789 hasRelatedWork W2044628003 @default.
- W4283209789 hasRelatedWork W2092773215 @default.
- W4283209789 hasRelatedWork W2095073570 @default.
- W4283209789 hasRelatedWork W2311785205 @default.
- W4283209789 hasRelatedWork W2408216969 @default.
- W4283209789 hasRelatedWork W2789892372 @default.
- W4283209789 hasRelatedWork W2989691098 @default.
- W4283209789 hasRelatedWork W4315778539 @default.
- W4283209789 hasVolume "161" @default.
- W4283209789 isParatext "false" @default.
- W4283209789 isRetracted "false" @default.
- W4283209789 workType "article" @default.