Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283210599> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4283210599 abstract "Currently, for Pinus pinea L., a valuable Mediterranean forest species in Catalonia, Spain, pinecone production is quantified visually before harvest with a manual count of the number of pinecones of the third year in a selection of trees and then extrapolated to estimate forest productivity. To increase the efficiency and objectivity of this process, we propose the use of remote sensing to estimate the pinecone productivity for every tree in a whole forest (complete coverage vs. subsampling). The use of unmanned aerial vehicle (UAV) flights with high-spatial-resolution imaging sensors is hypothesized to offer the most suitable platform with the most relevant image data collection from a mobile and aerial perspective. UAV flights and supplemental field data collections were carried out in several locations across Catalonia using sensors with different coverages of the visible (RGB) and near-infrared (NIR) spectrum. Spectral analyses of pinecones, needles, and woody branches using a field spectrometer indicated better spectral separation when using near-infrared sensors. The aerial perspective of the UAV was anticipated to reduce the percentage of hidden pinecones from a one-sided lateral perspective when conducting manual pinecone counts in the field. The fastRandomForest WEKA segmentation plugin in FIJI (Fiji is just ImageJ) was used to segment and quantify pinecones from the NIR UAV flights. The regression of manual image-based pinecone counts to field counts was R2 = 0.24; however, the comparison of manual image-based counts to automatic image-based counts reached R2 = 0.73. This research suggests pinecone counts were mostly limited by the perspective of the UAV, while the automatic image-based counting algorithm performed relatively well. In further field tests with RGB color images from the ground level, the WEKA fastRandomForest demonstrated an out-of-bag error of just 0.415%, further supporting the automatic counting machine learning algorithm capacities." @default.
- W4283210599 created "2022-06-22" @default.
- W4283210599 creator A5004584546 @default.
- W4283210599 creator A5011080719 @default.
- W4283210599 creator A5029239014 @default.
- W4283210599 creator A5040413856 @default.
- W4283210599 creator A5041651592 @default.
- W4283210599 creator A5050116839 @default.
- W4283210599 creator A5060015388 @default.
- W4283210599 creator A5061898749 @default.
- W4283210599 date "2022-06-17" @default.
- W4283210599 modified "2023-10-14" @default.
- W4283210599 title "Quantification of Pinus pinea L. Pinecone Productivity Using Machine Learning of UAV and Field Images" @default.
- W4283210599 cites W2345952498 @default.
- W4283210599 cites W2412887352 @default.
- W4283210599 cites W2418927192 @default.
- W4283210599 cites W2601810315 @default.
- W4283210599 cites W2735237498 @default.
- W4283210599 cites W2793051750 @default.
- W4283210599 cites W2944928868 @default.
- W4283210599 cites W2995081987 @default.
- W4283210599 cites W3002043659 @default.
- W4283210599 cites W3032296161 @default.
- W4283210599 cites W3082919689 @default.
- W4283210599 doi "https://doi.org/10.3390/iecf2021-10789" @default.
- W4283210599 hasPublicationYear "2022" @default.
- W4283210599 type Work @default.
- W4283210599 citedByCount "2" @default.
- W4283210599 countsByYear W42832105992023 @default.
- W4283210599 crossrefType "proceedings-article" @default.
- W4283210599 hasAuthorship W4283210599A5004584546 @default.
- W4283210599 hasAuthorship W4283210599A5011080719 @default.
- W4283210599 hasAuthorship W4283210599A5029239014 @default.
- W4283210599 hasAuthorship W4283210599A5040413856 @default.
- W4283210599 hasAuthorship W4283210599A5041651592 @default.
- W4283210599 hasAuthorship W4283210599A5050116839 @default.
- W4283210599 hasAuthorship W4283210599A5060015388 @default.
- W4283210599 hasAuthorship W4283210599A5061898749 @default.
- W4283210599 hasBestOaLocation W42832105991 @default.
- W4283210599 hasConcept C147103442 @default.
- W4283210599 hasConcept C173163844 @default.
- W4283210599 hasConcept C205649164 @default.
- W4283210599 hasConcept C28631016 @default.
- W4283210599 hasConcept C39432304 @default.
- W4283210599 hasConcept C41008148 @default.
- W4283210599 hasConcept C62649853 @default.
- W4283210599 hasConcept C97137747 @default.
- W4283210599 hasConceptScore W4283210599C147103442 @default.
- W4283210599 hasConceptScore W4283210599C173163844 @default.
- W4283210599 hasConceptScore W4283210599C205649164 @default.
- W4283210599 hasConceptScore W4283210599C28631016 @default.
- W4283210599 hasConceptScore W4283210599C39432304 @default.
- W4283210599 hasConceptScore W4283210599C41008148 @default.
- W4283210599 hasConceptScore W4283210599C62649853 @default.
- W4283210599 hasConceptScore W4283210599C97137747 @default.
- W4283210599 hasLocation W42832105991 @default.
- W4283210599 hasOpenAccess W4283210599 @default.
- W4283210599 hasPrimaryLocation W42832105991 @default.
- W4283210599 hasRelatedWork W2047232586 @default.
- W4283210599 hasRelatedWork W2133125644 @default.
- W4283210599 hasRelatedWork W2133144887 @default.
- W4283210599 hasRelatedWork W2139294397 @default.
- W4283210599 hasRelatedWork W2145982493 @default.
- W4283210599 hasRelatedWork W2776398399 @default.
- W4283210599 hasRelatedWork W2899084033 @default.
- W4283210599 hasRelatedWork W2905390890 @default.
- W4283210599 hasRelatedWork W2912130932 @default.
- W4283210599 hasRelatedWork W2960267326 @default.
- W4283210599 isParatext "false" @default.
- W4283210599 isRetracted "false" @default.
- W4283210599 workType "article" @default.