Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283211324> ?p ?o ?g. }
- W4283211324 endingPage "2360" @default.
- W4283211324 startingPage "2350" @default.
- W4283211324 abstract "Femoral neck fractures are common and are frequently treated with internal fixation. A major disadvantage of internal fixation is the substantially high number of conversions to arthroplasty because of nonunion, malunion, avascular necrosis, or implant failure. A clinical prediction model identifying patients at high risk of conversion to arthroplasty may help clinicians in selecting patients who could have benefited from arthroplasty initially.What is the predictive performance of a machine-learning (ML) algorithm to predict conversion to arthroplasty within 24 months after internal fixation in patients with femoral neck fractures?We included 875 patients from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial. The FAITH trial consisted of patients with low-energy femoral neck fractures who were randomly assigned to receive a sliding hip screw or cancellous screws for internal fixation. Of these patients, 18% (155 of 875) underwent conversion to THA or hemiarthroplasty within the first 24 months. All patients were randomly divided into a training set (80%) and test set (20%). First, we identified 27 potential patient and fracture characteristics that may have been associated with our primary outcome, based on biomechanical rationale and previous studies. Then, random forest algorithms (an ML learning, decision tree-based algorithm that selects variables) identified 10 predictors of conversion: BMI, cardiac disease, Garden classification, use of cardiac medication, use of pulmonary medication, age, lung disease, osteoarthritis, sex, and the level of the fracture line. Based on these variables, five different ML algorithms were trained to identify patterns related to conversion. The predictive performance of these trained ML algorithms was assessed on the training and test sets based on the following performance measures: (1) discrimination (the model's ability to distinguish patients who had conversion from those who did not; expressed with the area under the receiver operating characteristic curve [AUC]), (2) calibration (the plotted estimated versus the observed probabilities; expressed with the calibration curve intercept and slope), and (3) the overall model performance (Brier score: a composite of discrimination and calibration).None of the five ML algorithms performed well in predicting conversion to arthroplasty in the training set and the test set; AUCs of the algorithms in the training set ranged from 0.57 to 0.64, slopes of calibration plots ranged from 0.53 to 0.82, calibration intercepts ranged from -0.04 to 0.05, and Brier scores ranged from 0.14 to 0.15. The algorithms were further evaluated in the test set; AUCs ranged from 0.49 to 0.73, calibration slopes ranged from 0.17 to 1.29, calibration intercepts ranged from -1.28 to 0.34, and Brier scores ranged from 0.13 to 0.15.The predictive performance of the trained algorithms was poor, despite the use of one of the best datasets available worldwide on this subject. If the current dataset consisted of different variables or more patients, the performance may have been better. Also, various reasons for conversion to arthroplasty were pooled in this study, but the separate prediction of underlying pathology (such as, avascular necrosis or nonunion) may be more precise. Finally, it may be possible that it is inherently difficult to predict conversion to arthroplasty based on preoperative variables alone. Therefore, future studies should aim to include more variables and to differentiate between the various reasons for arthroplasty.Level III, prognostic study." @default.
- W4283211324 created "2022-06-22" @default.
- W4283211324 creator A5003292668 @default.
- W4283211324 creator A5011845102 @default.
- W4283211324 creator A5024213544 @default.
- W4283211324 creator A5024838044 @default.
- W4283211324 creator A5030765772 @default.
- W4283211324 creator A5032292778 @default.
- W4283211324 creator A5047514640 @default.
- W4283211324 creator A5048125439 @default.
- W4283211324 creator A5051649028 @default.
- W4283211324 creator A5055234397 @default.
- W4283211324 creator A5086444103 @default.
- W4283211324 creator A5089745344 @default.
- W4283211324 date "2022-06-21" @default.
- W4283211324 modified "2023-10-17" @default.
- W4283211324 title "Patients With Femoral Neck Fractures Are at Risk for Conversion to Arthroplasty After Internal Fixation: A Machine‐learning Algorithm" @default.
- W4283211324 cites W1205351037 @default.
- W4283211324 cites W1514836159 @default.
- W4283211324 cites W1964940342 @default.
- W4283211324 cites W1970001479 @default.
- W4283211324 cites W1972736977 @default.
- W4283211324 cites W1992888111 @default.
- W4283211324 cites W2019694480 @default.
- W4283211324 cites W2051225764 @default.
- W4283211324 cites W2052534965 @default.
- W4283211324 cites W2054193584 @default.
- W4283211324 cites W2058501452 @default.
- W4283211324 cites W2064186732 @default.
- W4283211324 cites W2068141066 @default.
- W4283211324 cites W2110396808 @default.
- W4283211324 cites W2119910794 @default.
- W4283211324 cites W2156133368 @default.
- W4283211324 cites W2163209362 @default.
- W4283211324 cites W2182824065 @default.
- W4283211324 cites W220441584 @default.
- W4283211324 cites W2336076805 @default.
- W4283211324 cites W2562251009 @default.
- W4283211324 cites W2596838035 @default.
- W4283211324 cites W2727650337 @default.
- W4283211324 cites W2734349958 @default.
- W4283211324 cites W2793748936 @default.
- W4283211324 cites W2801522221 @default.
- W4283211324 cites W2808260466 @default.
- W4283211324 cites W2884022208 @default.
- W4283211324 cites W2898559532 @default.
- W4283211324 cites W2901315505 @default.
- W4283211324 cites W2907638671 @default.
- W4283211324 cites W2908201961 @default.
- W4283211324 cites W2911964244 @default.
- W4283211324 cites W2942961506 @default.
- W4283211324 cites W2944954104 @default.
- W4283211324 cites W2965994265 @default.
- W4283211324 cites W2981273439 @default.
- W4283211324 cites W2983511265 @default.
- W4283211324 cites W2996480032 @default.
- W4283211324 cites W2998436926 @default.
- W4283211324 cites W3012413426 @default.
- W4283211324 cites W3081146098 @default.
- W4283211324 cites W3097023869 @default.
- W4283211324 cites W3097630254 @default.
- W4283211324 cites W3111310205 @default.
- W4283211324 cites W3117278409 @default.
- W4283211324 cites W3136075083 @default.
- W4283211324 cites W3170726633 @default.
- W4283211324 cites W3188545278 @default.
- W4283211324 cites W3197663305 @default.
- W4283211324 cites W3203599921 @default.
- W4283211324 cites W4200257826 @default.
- W4283211324 cites W4205116857 @default.
- W4283211324 cites W4231369891 @default.
- W4283211324 doi "https://doi.org/10.1097/corr.0000000000002283" @default.
- W4283211324 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35767811" @default.
- W4283211324 hasPublicationYear "2022" @default.
- W4283211324 type Work @default.
- W4283211324 citedByCount "1" @default.
- W4283211324 countsByYear W42832113242023 @default.
- W4283211324 crossrefType "journal-article" @default.
- W4283211324 hasAuthorship W4283211324A5003292668 @default.
- W4283211324 hasAuthorship W4283211324A5011845102 @default.
- W4283211324 hasAuthorship W4283211324A5024213544 @default.
- W4283211324 hasAuthorship W4283211324A5024838044 @default.
- W4283211324 hasAuthorship W4283211324A5030765772 @default.
- W4283211324 hasAuthorship W4283211324A5032292778 @default.
- W4283211324 hasAuthorship W4283211324A5047514640 @default.
- W4283211324 hasAuthorship W4283211324A5048125439 @default.
- W4283211324 hasAuthorship W4283211324A5051649028 @default.
- W4283211324 hasAuthorship W4283211324A5055234397 @default.
- W4283211324 hasAuthorship W4283211324A5086444103 @default.
- W4283211324 hasAuthorship W4283211324A5089745344 @default.
- W4283211324 hasBestOaLocation W42832113241 @default.
- W4283211324 hasConcept C11413529 @default.
- W4283211324 hasConcept C126322002 @default.
- W4283211324 hasConcept C141071460 @default.
- W4283211324 hasConcept C2775854910 @default.
- W4283211324 hasConcept C2776541429 @default.
- W4283211324 hasConcept C2777560053 @default.
- W4283211324 hasConcept C2778336525 @default.