Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283216870> ?p ?o ?g. }
- W4283216870 endingPage "469" @default.
- W4283216870 startingPage "456" @default.
- W4283216870 abstract "A typical stroke MRI protocol includes perfusion-weighted imaging (PWI) and MR angiography (MRA), requiring a second dose of contrast agent. A deep learning method to acquire both PWI and MRA with single dose can resolve this issue.To acquire both PWI and MRA simultaneously using deep learning approaches.Retrospective.A total of 60 patients (30-73 years old, 31 females) with ischemic symptoms due to occlusion or ≥50% stenosis (measured relative to proximal artery diameter) of the internal carotid artery, middle cerebral artery, or anterior cerebral artery. The 51/1/8 patient data were used as training/validation/test.A 3 T, time-resolved angiography with stochastic trajectory (contrast-enhanced MRA) and echo planar imaging (dynamic susceptibility contrast MRI, DSC-MRI).We investigated eight different U-Net architectures with different encoder/decoder sizes and with/without an adversarial network to generate perfusion maps from contrast-enhanced MRA. Relative cerebral blood volume (rCBV), relative cerebral blood flow (rCBF), mean transit time (MTT), and time-to-max (Tmax ) were mapped from DSC-MRI and used as ground truth to train the networks and to generate the perfusion maps from the contrast-enhanced MRA input.Normalized root mean square error, structural similarity (SSIM), peak signal-to-noise ratio (pSNR), DICE, and FID scores were calculated between the perfusion maps from DSC-MRI and contrast-enhanced MRA. One-tailed t-test was performed to check the significance of the improvements between networks. P values < 0.05 were considered significant.The four perfusion maps were successfully extracted using the deep learning networks. U-net with multiple decoders and enhanced encoders showed the best performance (pSNR 24.7 ± 3.2 and SSIM 0.89 ± 0.08 for rCBV). DICE score in hypo-perfused area showed strong agreement between the generated perfusion maps and the ground truth (highest DICE: 0.95 ± 0.04).With the proposed approach, dynamic angiography MRI may provide vessel architecture and perfusion-relevant parameters simultaneously from a single scan.3 TECHNICAL EFFICACY: Stage 5." @default.
- W4283216870 created "2022-06-22" @default.
- W4283216870 creator A5005041135 @default.
- W4283216870 creator A5005383296 @default.
- W4283216870 creator A5006166728 @default.
- W4283216870 creator A5011017832 @default.
- W4283216870 creator A5037385079 @default.
- W4283216870 date "2022-06-21" @default.
- W4283216870 modified "2023-10-12" @default.
- W4283216870 title "Perfusion Maps Acquired From Dynamic Angiography <scp>MRI</scp> Using Deep Learning Approaches" @default.
- W4283216870 cites W1512888998 @default.
- W4283216870 cites W1901129140 @default.
- W4283216870 cites W1977355015 @default.
- W4283216870 cites W1987421202 @default.
- W4283216870 cites W2000957873 @default.
- W4283216870 cites W2002242780 @default.
- W4283216870 cites W2018577646 @default.
- W4283216870 cites W2041148826 @default.
- W4283216870 cites W2041586141 @default.
- W4283216870 cites W2056046616 @default.
- W4283216870 cites W2057465812 @default.
- W4283216870 cites W2107306129 @default.
- W4283216870 cites W2113261003 @default.
- W4283216870 cites W2125054404 @default.
- W4283216870 cites W2134637191 @default.
- W4283216870 cites W2310992461 @default.
- W4283216870 cites W2321627895 @default.
- W4283216870 cites W2331128040 @default.
- W4283216870 cites W2525606708 @default.
- W4283216870 cites W2577325523 @default.
- W4283216870 cites W2726204845 @default.
- W4283216870 cites W2743780012 @default.
- W4283216870 cites W2800433434 @default.
- W4283216870 cites W2886615269 @default.
- W4283216870 cites W2945892363 @default.
- W4283216870 cites W2947694040 @default.
- W4283216870 cites W2962949934 @default.
- W4283216870 cites W2963073614 @default.
- W4283216870 cites W2977841542 @default.
- W4283216870 cites W2982084551 @default.
- W4283216870 cites W2982654872 @default.
- W4283216870 cites W2998376473 @default.
- W4283216870 cites W3001152983 @default.
- W4283216870 cites W3007331254 @default.
- W4283216870 cites W3012250996 @default.
- W4283216870 cites W3123982987 @default.
- W4283216870 cites W3127449471 @default.
- W4283216870 cites W3166758207 @default.
- W4283216870 doi "https://doi.org/10.1002/jmri.28315" @default.
- W4283216870 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35726646" @default.
- W4283216870 hasPublicationYear "2022" @default.
- W4283216870 type Work @default.
- W4283216870 citedByCount "1" @default.
- W4283216870 countsByYear W42832168702023 @default.
- W4283216870 crossrefType "journal-article" @default.
- W4283216870 hasAuthorship W4283216870A5005041135 @default.
- W4283216870 hasAuthorship W4283216870A5005383296 @default.
- W4283216870 hasAuthorship W4283216870A5006166728 @default.
- W4283216870 hasAuthorship W4283216870A5011017832 @default.
- W4283216870 hasAuthorship W4283216870A5037385079 @default.
- W4283216870 hasConcept C126322002 @default.
- W4283216870 hasConcept C126838900 @default.
- W4283216870 hasConcept C135691158 @default.
- W4283216870 hasConcept C143409427 @default.
- W4283216870 hasConcept C146957229 @default.
- W4283216870 hasConcept C2775841333 @default.
- W4283216870 hasConcept C2778212899 @default.
- W4283216870 hasConcept C2778333808 @default.
- W4283216870 hasConcept C2780643987 @default.
- W4283216870 hasConcept C2989005 @default.
- W4283216870 hasConcept C41727105 @default.
- W4283216870 hasConcept C541997718 @default.
- W4283216870 hasConcept C71924100 @default.
- W4283216870 hasConceptScore W4283216870C126322002 @default.
- W4283216870 hasConceptScore W4283216870C126838900 @default.
- W4283216870 hasConceptScore W4283216870C135691158 @default.
- W4283216870 hasConceptScore W4283216870C143409427 @default.
- W4283216870 hasConceptScore W4283216870C146957229 @default.
- W4283216870 hasConceptScore W4283216870C2775841333 @default.
- W4283216870 hasConceptScore W4283216870C2778212899 @default.
- W4283216870 hasConceptScore W4283216870C2778333808 @default.
- W4283216870 hasConceptScore W4283216870C2780643987 @default.
- W4283216870 hasConceptScore W4283216870C2989005 @default.
- W4283216870 hasConceptScore W4283216870C41727105 @default.
- W4283216870 hasConceptScore W4283216870C541997718 @default.
- W4283216870 hasConceptScore W4283216870C71924100 @default.
- W4283216870 hasFunder F4320318847 @default.
- W4283216870 hasFunder F4320322120 @default.
- W4283216870 hasIssue "2" @default.
- W4283216870 hasLocation W42832168701 @default.
- W4283216870 hasLocation W42832168702 @default.
- W4283216870 hasOpenAccess W4283216870 @default.
- W4283216870 hasPrimaryLocation W42832168701 @default.
- W4283216870 hasRelatedWork W2113261003 @default.
- W4283216870 hasRelatedWork W2331514220 @default.
- W4283216870 hasRelatedWork W2355803277 @default.
- W4283216870 hasRelatedWork W2475321524 @default.
- W4283216870 hasRelatedWork W3171405893 @default.