Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283218200> ?p ?o ?g. }
- W4283218200 abstract "The management of crop residue covering is a vital part of conservation tillage, which protects black soil by reducing soil erosion and increasing soil organic carbon. Accurate and rapid classification of corn residue-covered types is significant for monitoring crop residue management. The remote sensing technology using high spatial resolution images is an effective means to classify the crop residue-covered areas quickly and objectively in the regional area. Unfortunately, the classification of crop residue-covered area is tricky because there is intra-object heterogeneity, as a two-edged sword of high resolution, and spectral confusion resulting from different straw mulching ways. Therefore, this study focuses on exploring the multi-scale feature fusion method and classification method to classify the corn residue-covered areas effectively and accurately using Chinese high-resolution GF-2 PMS images in the regional area. First, the multi-scale image features are built by compressing pixel domain details with the wavelet and principal component analysis (PCA), which has been verified to effectively alleviate intra-object heterogeneity of corn residue-covered areas on GF-2 PMS images. Second, the optimal image dataset (OID) is identified by comparing model accuracy based on the fusion of different features. Third, the 1D-CNN_CA method is proposed by combining one-dimensional convolutional neural networks (1D-CNN) and attention mechanisms, which are used to classify corn residue-covered areas based on the OID. Comparison of the naive Bayesian (NB), random forest (RF), support vector machine (SVM), and 1D-CNN methods indicate that the residue-covered areas can be classified effectively using the 1D-CNN-CA method with the highest accuracy (Kappa: 96.92% and overall accuracy (OA): 97.26%). Finally, the most appropriate machine learning model and the connected domain calibration method are combined to improve the visualization, which are further used to classify the corn residue-covered areas into three covering types. In addition, the study showed the superiority of multi-scale image features by comparing the contribution of the different image features in the classification of corn residue-covered areas." @default.
- W4283218200 created "2022-06-22" @default.
- W4283218200 creator A5006296729 @default.
- W4283218200 creator A5011145539 @default.
- W4283218200 creator A5011914108 @default.
- W4283218200 creator A5021152230 @default.
- W4283218200 creator A5030290401 @default.
- W4283218200 creator A5036732883 @default.
- W4283218200 creator A5046271690 @default.
- W4283218200 creator A5067681796 @default.
- W4283218200 creator A5072864969 @default.
- W4283218200 creator A5077901649 @default.
- W4283218200 date "2022-06-21" @default.
- W4283218200 modified "2023-09-30" @default.
- W4283218200 title "Mapping the Corn Residue-Covered Types Using Multi-Scale Feature Fusion and Supervised Learning Method by Chinese GF-2 PMS Image" @default.
- W4283218200 cites W1551782597 @default.
- W4283218200 cites W1596410209 @default.
- W4283218200 cites W1875061881 @default.
- W4283218200 cites W1937731213 @default.
- W4283218200 cites W1938500889 @default.
- W4283218200 cites W1970144159 @default.
- W4283218200 cites W1992599498 @default.
- W4283218200 cites W2004925383 @default.
- W4283218200 cites W2028847965 @default.
- W4283218200 cites W2028913476 @default.
- W4283218200 cites W2063923412 @default.
- W4283218200 cites W2132424470 @default.
- W4283218200 cites W2147316554 @default.
- W4283218200 cites W2152254169 @default.
- W4283218200 cites W2261059368 @default.
- W4283218200 cites W2311203878 @default.
- W4283218200 cites W2548049441 @default.
- W4283218200 cites W2594345868 @default.
- W4283218200 cites W2598942925 @default.
- W4283218200 cites W2648242067 @default.
- W4283218200 cites W2724194092 @default.
- W4283218200 cites W2743255627 @default.
- W4283218200 cites W2793157193 @default.
- W4283218200 cites W2793927960 @default.
- W4283218200 cites W2795396883 @default.
- W4283218200 cites W2810750457 @default.
- W4283218200 cites W2903282641 @default.
- W4283218200 cites W2918436704 @default.
- W4283218200 cites W2970579774 @default.
- W4283218200 cites W2983376237 @default.
- W4283218200 cites W2990860778 @default.
- W4283218200 cites W2995135701 @default.
- W4283218200 cites W2999585470 @default.
- W4283218200 cites W3001516132 @default.
- W4283218200 cites W3014372673 @default.
- W4283218200 cites W3017257445 @default.
- W4283218200 cites W3020553832 @default.
- W4283218200 cites W3036295623 @default.
- W4283218200 cites W3090516574 @default.
- W4283218200 cites W3103897629 @default.
- W4283218200 cites W3111289187 @default.
- W4283218200 cites W3131283116 @default.
- W4283218200 cites W3137327109 @default.
- W4283218200 cites W3186484713 @default.
- W4283218200 cites W4200172184 @default.
- W4283218200 cites W4212981632 @default.
- W4283218200 cites W4226151124 @default.
- W4283218200 doi "https://doi.org/10.3389/fpls.2022.901042" @default.
- W4283218200 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35800607" @default.
- W4283218200 hasPublicationYear "2022" @default.
- W4283218200 type Work @default.
- W4283218200 citedByCount "3" @default.
- W4283218200 countsByYear W42832182002023 @default.
- W4283218200 crossrefType "journal-article" @default.
- W4283218200 hasAuthorship W4283218200A5006296729 @default.
- W4283218200 hasAuthorship W4283218200A5011145539 @default.
- W4283218200 hasAuthorship W4283218200A5011914108 @default.
- W4283218200 hasAuthorship W4283218200A5021152230 @default.
- W4283218200 hasAuthorship W4283218200A5030290401 @default.
- W4283218200 hasAuthorship W4283218200A5036732883 @default.
- W4283218200 hasAuthorship W4283218200A5046271690 @default.
- W4283218200 hasAuthorship W4283218200A5067681796 @default.
- W4283218200 hasAuthorship W4283218200A5072864969 @default.
- W4283218200 hasAuthorship W4283218200A5077901649 @default.
- W4283218200 hasBestOaLocation W42832182001 @default.
- W4283218200 hasConcept C118518473 @default.
- W4283218200 hasConcept C12267149 @default.
- W4283218200 hasConcept C153180895 @default.
- W4283218200 hasConcept C154945302 @default.
- W4283218200 hasConcept C166957645 @default.
- W4283218200 hasConcept C169258074 @default.
- W4283218200 hasConcept C183889291 @default.
- W4283218200 hasConcept C185592680 @default.
- W4283218200 hasConcept C205649164 @default.
- W4283218200 hasConcept C27438332 @default.
- W4283218200 hasConcept C2781338088 @default.
- W4283218200 hasConcept C39432304 @default.
- W4283218200 hasConcept C41008148 @default.
- W4283218200 hasConcept C55493867 @default.
- W4283218200 hasConcept C62649853 @default.
- W4283218200 hasConceptScore W4283218200C118518473 @default.
- W4283218200 hasConceptScore W4283218200C12267149 @default.
- W4283218200 hasConceptScore W4283218200C153180895 @default.
- W4283218200 hasConceptScore W4283218200C154945302 @default.
- W4283218200 hasConceptScore W4283218200C166957645 @default.