Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283219983> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4283219983 endingPage "86" @default.
- W4283219983 startingPage "72" @default.
- W4283219983 abstract "Malicious traffic detection is one of the most important parts of cyber security. The approaches of using the flow as the detection object are recognized as effective. Benefiting from the development of deep learning techniques, raw traffic can be directly used as a feature to detect malicious traffic. Most existing work usually converts raw traffic into images or long sequences to express a flow and then uses deep learning technology to extract features and classify them, but the generated features contain much redundant or even useless information, especially for encrypted traffic. The packet header field contains most of the packet characteristics except the payload content, and it is also an important element of the flow. In this paper, we only use the fields of the packet header in the raw traffic to construct the characteristic representation of the traffic and propose a novel flow-vector generation approach for malicious traffic detection. The preprocessed header fields are embedded as field vectors, and then a two-layer attention network is used to progressively generate the packet vectors and the flow vector containing context information. The flow vector is regarded as the abstraction of the raw traffic and is used to classify. The experiment results illustrate that the accuracy rate can reach up to 99.48% in the binary classification task and the average of AUC-ROC can reach 0.9988 in the multi-classification task. • We proposed an approach to gradually construct flow vectors from the field vector. • Extract information irrelevant to the payload from the raw traffic as input. • Unique field value representation makes the embedded vector more effective. • The adjustable number of packets in-flow makes the model more flexible." @default.
- W4283219983 created "2022-06-22" @default.
- W4283219983 creator A5013016841 @default.
- W4283219983 creator A5026790576 @default.
- W4283219983 creator A5032776934 @default.
- W4283219983 creator A5044811454 @default.
- W4283219983 creator A5056608045 @default.
- W4283219983 creator A5058700197 @default.
- W4283219983 date "2022-11-01" @default.
- W4283219983 modified "2023-09-26" @default.
- W4283219983 title "A novel flow-vector generation approach for malicious traffic detection" @default.
- W4283219983 cites W2031163547 @default.
- W4283219983 cites W2077488147 @default.
- W4283219983 cites W2267339884 @default.
- W4283219983 cites W2342408547 @default.
- W4283219983 cites W2762776925 @default.
- W4283219983 cites W2772317693 @default.
- W4283219983 cites W2783741806 @default.
- W4283219983 cites W2807786182 @default.
- W4283219983 cites W2840169530 @default.
- W4283219983 cites W2885478531 @default.
- W4283219983 cites W2890507837 @default.
- W4283219983 cites W2958986637 @default.
- W4283219983 cites W2971076825 @default.
- W4283219983 cites W2979998718 @default.
- W4283219983 cites W2980759501 @default.
- W4283219983 cites W3033696346 @default.
- W4283219983 cites W3098596104 @default.
- W4283219983 cites W3111563271 @default.
- W4283219983 cites W3128364441 @default.
- W4283219983 cites W3131088496 @default.
- W4283219983 cites W3131815991 @default.
- W4283219983 cites W3180847185 @default.
- W4283219983 doi "https://doi.org/10.1016/j.jpdc.2022.06.004" @default.
- W4283219983 hasPublicationYear "2022" @default.
- W4283219983 type Work @default.
- W4283219983 citedByCount "3" @default.
- W4283219983 countsByYear W42832199832022 @default.
- W4283219983 countsByYear W42832199832023 @default.
- W4283219983 crossrefType "journal-article" @default.
- W4283219983 hasAuthorship W4283219983A5013016841 @default.
- W4283219983 hasAuthorship W4283219983A5026790576 @default.
- W4283219983 hasAuthorship W4283219983A5032776934 @default.
- W4283219983 hasAuthorship W4283219983A5044811454 @default.
- W4283219983 hasAuthorship W4283219983A5056608045 @default.
- W4283219983 hasAuthorship W4283219983A5058700197 @default.
- W4283219983 hasConcept C114809511 @default.
- W4283219983 hasConcept C126255220 @default.
- W4283219983 hasConcept C2524010 @default.
- W4283219983 hasConcept C33923547 @default.
- W4283219983 hasConcept C38349280 @default.
- W4283219983 hasConcept C38652104 @default.
- W4283219983 hasConcept C41008148 @default.
- W4283219983 hasConceptScore W4283219983C114809511 @default.
- W4283219983 hasConceptScore W4283219983C126255220 @default.
- W4283219983 hasConceptScore W4283219983C2524010 @default.
- W4283219983 hasConceptScore W4283219983C33923547 @default.
- W4283219983 hasConceptScore W4283219983C38349280 @default.
- W4283219983 hasConceptScore W4283219983C38652104 @default.
- W4283219983 hasConceptScore W4283219983C41008148 @default.
- W4283219983 hasLocation W42832199831 @default.
- W4283219983 hasOpenAccess W4283219983 @default.
- W4283219983 hasPrimaryLocation W42832199831 @default.
- W4283219983 hasRelatedWork W2001284284 @default.
- W4283219983 hasRelatedWork W2069541586 @default.
- W4283219983 hasRelatedWork W2270959725 @default.
- W4283219983 hasRelatedWork W2328573142 @default.
- W4283219983 hasRelatedWork W2368007657 @default.
- W4283219983 hasRelatedWork W3000598246 @default.
- W4283219983 hasRelatedWork W3141113327 @default.
- W4283219983 hasRelatedWork W4206915070 @default.
- W4283219983 hasRelatedWork W4311255633 @default.
- W4283219983 hasRelatedWork W4381333972 @default.
- W4283219983 hasVolume "169" @default.
- W4283219983 isParatext "false" @default.
- W4283219983 isRetracted "false" @default.
- W4283219983 workType "article" @default.