Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283221245> ?p ?o ?g. }
- W4283221245 endingPage "164" @default.
- W4283221245 startingPage "146" @default.
- W4283221245 abstract "• The emerging dependency on Electric vehicles and the role of Machine Learning in bolstering it. • Hybrid techniques tend to outwit different approaches. • Comprehensive review of various battery life estimation techniques about Machine Learning and Deep Learning. • Challenges faced and future scope of Deep Learning and Machine Learning in the State of Charge, knee-point, and Remaining Useful Life prediction of Lithium-ion batteries. Rapid adoption in the usage of li-ion battery-fueled vehicles provides a promising approach to assuage the impact of climate change. The implementation and increasing sales trends in the Electric vehicle industry have created positive results in various regions. The reliability and consistency of the Battery management system in new-age Electric vehicles to predict the remaining battery cycles, State of charge, and knee point prove to be a complex task citing the non-linear behavior of lithium-ion batteries throughout their complete lifecycle. However, to make sure that the batteries work as intended consistently, there arises a need to monitor the battery's health and performance regularly. By examining recent literature, this paper carries out a comparative study of various published research regarding estimating the State of charge for Lithium-ion batteries using multiple methods, classified into three categories: adaptive, data-driven, and hybrid approaches. We also conducted a comparative study on Knee-point and the number of charge-discharge cycles left about electric vehicles. This review intends to furnish a comparative analysis of Machine learning & Artificial intelligence-related estimation techniques and analyze their superiority over traditional data-driven methods. It was observed that hybrid techniques consisting of various Machine learning algorithms yielded good results. This paper aims to perceive the most accurate algorithms and methodologies used, which can be further used in battery management systems to improve battery prognostics drastically. The future works and challenges encountered in various researches have also been mentioned at the end of the review that will hopefully pave the way for increasing efforts towards the development of the advanced SOC, knee point, and RUL methods for future EV uses." @default.
- W4283221245 created "2022-06-22" @default.
- W4283221245 creator A5020882721 @default.
- W4283221245 creator A5025827214 @default.
- W4283221245 creator A5031683882 @default.
- W4283221245 creator A5091192993 @default.
- W4283221245 date "2022-09-01" @default.
- W4283221245 modified "2023-10-16" @default.
- W4283221245 title "State of charge, remaining useful life and knee point estimation based on artificial intelligence and Machine learning in lithium-ion EV batteries: A comprehensive review" @default.
- W4283221245 cites W1566458452 @default.
- W4283221245 cites W1628954589 @default.
- W4283221245 cites W1679521137 @default.
- W4283221245 cites W1969506110 @default.
- W4283221245 cites W2005013237 @default.
- W4283221245 cites W2006318126 @default.
- W4283221245 cites W2012346040 @default.
- W4283221245 cites W2023975183 @default.
- W4283221245 cites W2034758150 @default.
- W4283221245 cites W2037195735 @default.
- W4283221245 cites W2045317586 @default.
- W4283221245 cites W2047883339 @default.
- W4283221245 cites W2050395192 @default.
- W4283221245 cites W2070352690 @default.
- W4283221245 cites W2071559560 @default.
- W4283221245 cites W2086633088 @default.
- W4283221245 cites W2095027161 @default.
- W4283221245 cites W2103884570 @default.
- W4283221245 cites W2127342270 @default.
- W4283221245 cites W2129746134 @default.
- W4283221245 cites W2148468102 @default.
- W4283221245 cites W2155832827 @default.
- W4283221245 cites W2205469960 @default.
- W4283221245 cites W2405191498 @default.
- W4283221245 cites W2612587095 @default.
- W4283221245 cites W2741303398 @default.
- W4283221245 cites W2762861296 @default.
- W4283221245 cites W2790625295 @default.
- W4283221245 cites W2796854462 @default.
- W4283221245 cites W2801591650 @default.
- W4283221245 cites W2801753412 @default.
- W4283221245 cites W2804457427 @default.
- W4283221245 cites W2809817009 @default.
- W4283221245 cites W2816423305 @default.
- W4283221245 cites W2883525675 @default.
- W4283221245 cites W2885578090 @default.
- W4283221245 cites W2885973756 @default.
- W4283221245 cites W2889171365 @default.
- W4283221245 cites W2899280876 @default.
- W4283221245 cites W2907460853 @default.
- W4283221245 cites W2914362984 @default.
- W4283221245 cites W2917063844 @default.
- W4283221245 cites W2917669645 @default.
- W4283221245 cites W2920879126 @default.
- W4283221245 cites W2922306207 @default.
- W4283221245 cites W2924382816 @default.
- W4283221245 cites W2941166397 @default.
- W4283221245 cites W2941475335 @default.
- W4283221245 cites W2943460745 @default.
- W4283221245 cites W2965460092 @default.
- W4283221245 cites W2966169983 @default.
- W4283221245 cites W2967686386 @default.
- W4283221245 cites W2990959288 @default.
- W4283221245 cites W2996610370 @default.
- W4283221245 cites W2999467299 @default.
- W4283221245 cites W3007104725 @default.
- W4283221245 cites W3009077662 @default.
- W4283221245 cites W3009652674 @default.
- W4283221245 cites W3010779281 @default.
- W4283221245 cites W3012264837 @default.
- W4283221245 cites W3012309884 @default.
- W4283221245 cites W3017990358 @default.
- W4283221245 cites W3026434676 @default.
- W4283221245 cites W3035047300 @default.
- W4283221245 cites W3042192960 @default.
- W4283221245 cites W3048997617 @default.
- W4283221245 cites W3049495830 @default.
- W4283221245 cites W3062552330 @default.
- W4283221245 cites W3092945008 @default.
- W4283221245 cites W3093838722 @default.
- W4283221245 cites W3094926430 @default.
- W4283221245 cites W3096459816 @default.
- W4283221245 cites W3111761947 @default.
- W4283221245 cites W3116578724 @default.
- W4283221245 cites W3127186150 @default.
- W4283221245 cites W3131027321 @default.
- W4283221245 cites W3131698918 @default.
- W4283221245 cites W3135148600 @default.
- W4283221245 cites W3154061193 @default.
- W4283221245 cites W3167145731 @default.
- W4283221245 cites W3171353223 @default.
- W4283221245 cites W3175326495 @default.
- W4283221245 cites W3175359396 @default.
- W4283221245 cites W3178086426 @default.
- W4283221245 cites W3181227736 @default.
- W4283221245 cites W3194214662 @default.
- W4283221245 cites W3199081584 @default.
- W4283221245 cites W3199713575 @default.
- W4283221245 cites W3200185398 @default.