Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283221424> ?p ?o ?g. }
- W4283221424 endingPage "20" @default.
- W4283221424 startingPage "1" @default.
- W4283221424 abstract "The stochastic and nonlinear characteristics of electric arc furnaces (EAFs) lead to power quality challenges in the power system. In studying EAF behaviors, having optimized characteristics/models, selecting a suitable and optimum model that adapts to the actual characteristics of EAFs, and investigating simulation software’s capability for implementing EAF models are essential. However, the literature shows a research gap in investigating EAF simulations in various software products based on different models. This paper studies several time-domain models, such as piece-wise linear, modified piece-wise linear, hyperbolic, exponential, and exponential-hyperbolic models, for EAF modeling and simulation. The optimal estimation of parameters for the introduced models is necessary to adapt actual EAF characteristics. Thus, one of the studies taken in this paper is optimizing the EAF model’s characteristics. The proposed optimization problem is solved using the genetic algorithm (GA) and particle swarm optimization (PSO). Moreover, the optimized models are simulated in DIgSILENT and EMTP-RV to investigate different EAF models from the viewpoint of accuracy and efficiency. The optimization of different EAF models’ characteristics and comparison of EMTP-RV and DIgSILENT in simulating EAF behavior are the contributions of this paper. The proposed method is validated based on the actual data of a realistic EAF-based steel company in Iran. The obtained results show that the modified piece-wise linear model has the most accuracy in identifying the EAF behavior. The test results based on DIgSILENT and EMTP-RV simulations imply that the EAF could be simulated with high accuracy using modified piece-wise linear and piece-wise linear models. In general, EMTP-RV has expressed more accuracy in simulating different EAF models, and the simulation execution speed of EMTP-RV is around 2.5 times faster than DIgSILENT. In contrast, DIgSILENT is more suitable to facilitate the power system studies of EAF according to its extensive study tools and library." @default.
- W4283221424 created "2022-06-22" @default.
- W4283221424 creator A5048299500 @default.
- W4283221424 creator A5054054547 @default.
- W4283221424 creator A5084245977 @default.
- W4283221424 date "2022-06-20" @default.
- W4283221424 modified "2023-10-14" @default.
- W4283221424 title "Optimal Electric Arc Furnace Model’s Characteristics Using Genetic Algorithm and Particle Swarm Optimization and Comparison of Various Optimal Characteristics in DIgSILENT and EMTP-RV" @default.
- W4283221424 cites W1598138469 @default.
- W4283221424 cites W1895835565 @default.
- W4283221424 cites W1977626234 @default.
- W4283221424 cites W2006006677 @default.
- W4283221424 cites W2037646317 @default.
- W4283221424 cites W2065329097 @default.
- W4283221424 cites W2081964178 @default.
- W4283221424 cites W2104152349 @default.
- W4283221424 cites W2105435656 @default.
- W4283221424 cites W2107066665 @default.
- W4283221424 cites W2139457833 @default.
- W4283221424 cites W2142057140 @default.
- W4283221424 cites W2145195424 @default.
- W4283221424 cites W2153309679 @default.
- W4283221424 cites W2155603906 @default.
- W4283221424 cites W2167357039 @default.
- W4283221424 cites W2311824456 @default.
- W4283221424 cites W2474889150 @default.
- W4283221424 cites W2523091086 @default.
- W4283221424 cites W2544658820 @default.
- W4283221424 cites W2737425563 @default.
- W4283221424 cites W2760517951 @default.
- W4283221424 cites W2792009549 @default.
- W4283221424 cites W2793146944 @default.
- W4283221424 cites W2799057747 @default.
- W4283221424 cites W2809557483 @default.
- W4283221424 cites W2901126288 @default.
- W4283221424 cites W2907041344 @default.
- W4283221424 cites W2939141125 @default.
- W4283221424 cites W2963475717 @default.
- W4283221424 cites W3082017013 @default.
- W4283221424 cites W3089380570 @default.
- W4283221424 cites W3119504101 @default.
- W4283221424 cites W3130233366 @default.
- W4283221424 cites W3152669310 @default.
- W4283221424 cites W3161873032 @default.
- W4283221424 cites W3169134498 @default.
- W4283221424 cites W3176013930 @default.
- W4283221424 cites W3185563625 @default.
- W4283221424 cites W3214531333 @default.
- W4283221424 cites W4200384094 @default.
- W4283221424 cites W4200437367 @default.
- W4283221424 cites W4205338104 @default.
- W4283221424 doi "https://doi.org/10.1155/2022/9952315" @default.
- W4283221424 hasPublicationYear "2022" @default.
- W4283221424 type Work @default.
- W4283221424 citedByCount "1" @default.
- W4283221424 countsByYear W42832214242022 @default.
- W4283221424 crossrefType "journal-article" @default.
- W4283221424 hasAuthorship W4283221424A5048299500 @default.
- W4283221424 hasAuthorship W4283221424A5054054547 @default.
- W4283221424 hasAuthorship W4283221424A5084245977 @default.
- W4283221424 hasBestOaLocation W42832214241 @default.
- W4283221424 hasConcept C11413529 @default.
- W4283221424 hasConcept C121332964 @default.
- W4283221424 hasConcept C126255220 @default.
- W4283221424 hasConcept C127413603 @default.
- W4283221424 hasConcept C163258240 @default.
- W4283221424 hasConcept C191897082 @default.
- W4283221424 hasConcept C192562407 @default.
- W4283221424 hasConcept C199360897 @default.
- W4283221424 hasConcept C199948506 @default.
- W4283221424 hasConcept C2777904410 @default.
- W4283221424 hasConcept C2778363592 @default.
- W4283221424 hasConcept C33923547 @default.
- W4283221424 hasConcept C41008148 @default.
- W4283221424 hasConcept C62520636 @default.
- W4283221424 hasConcept C85617194 @default.
- W4283221424 hasConcept C8880873 @default.
- W4283221424 hasConcept C89227174 @default.
- W4283221424 hasConceptScore W4283221424C11413529 @default.
- W4283221424 hasConceptScore W4283221424C121332964 @default.
- W4283221424 hasConceptScore W4283221424C126255220 @default.
- W4283221424 hasConceptScore W4283221424C127413603 @default.
- W4283221424 hasConceptScore W4283221424C163258240 @default.
- W4283221424 hasConceptScore W4283221424C191897082 @default.
- W4283221424 hasConceptScore W4283221424C192562407 @default.
- W4283221424 hasConceptScore W4283221424C199360897 @default.
- W4283221424 hasConceptScore W4283221424C199948506 @default.
- W4283221424 hasConceptScore W4283221424C2777904410 @default.
- W4283221424 hasConceptScore W4283221424C2778363592 @default.
- W4283221424 hasConceptScore W4283221424C33923547 @default.
- W4283221424 hasConceptScore W4283221424C41008148 @default.
- W4283221424 hasConceptScore W4283221424C62520636 @default.
- W4283221424 hasConceptScore W4283221424C85617194 @default.
- W4283221424 hasConceptScore W4283221424C8880873 @default.
- W4283221424 hasConceptScore W4283221424C89227174 @default.
- W4283221424 hasLocation W42832214241 @default.
- W4283221424 hasOpenAccess W4283221424 @default.
- W4283221424 hasPrimaryLocation W42832214241 @default.