Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283260084> ?p ?o ?g. }
- W4283260084 endingPage "2509" @default.
- W4283260084 startingPage "2509" @default.
- W4283260084 abstract "Geopolymers might be the superlative alternative to conventional cement because it is produced from aluminosilicate-rich waste sources to eliminate the issues associated with its manufacture and use. Geopolymer composites (GPCs) are gaining popularity, and their research is expanding. However, casting, curing, and testing specimens requires significant effort, price, and time. For research to be efficient, it is essential to apply novel approaches to the said objective. In this study, compressive strength (CS) of GPCs was anticipated using machine learning (ML) approaches, i.e., one single method (support vector machine (SVM)) and two ensembled algorithms (gradient boosting (GB) and extreme gradient boosting (XGB)). All models' validity and comparability were tested using the coefficient of determination (R2), statistical tests, and k-fold analysis. In addition, a model-independent post hoc approach known as SHapley Additive exPlanations (SHAP) was employed to investigate the impact of input factors on the CS of GPCs. In predicting the CS of GPCs, it was observed that ensembled ML strategies performed better than the single ML technique. The R2 for the SVM, GB, and XGB models were 0.98, 0.97, and 0.93, respectively. The lowered error values of the models, including mean absolute and root mean square errors, further verified the enhanced precision of the ensembled ML approaches. The SHAP analysis revealed a stronger positive correlation between GGBS and GPC's CS. The effects of NaOH molarity, NaOH, and Na2SiO3 were also observed as more positive. Fly ash and gravel size: 10/20 mm have both beneficial and negative impacts on the GPC's CS. Raising the concentration of these ingredients enhances the CS, whereas increasing the concentration of GPC reduces it. Gravel size: 4/10 mm has less favorable and more negative effects. ML techniques will benefit the construction sector by offering rapid and cost-efficient solutions for assessing material characteristics." @default.
- W4283260084 created "2022-06-23" @default.
- W4283260084 creator A5001572579 @default.
- W4283260084 creator A5003971462 @default.
- W4283260084 creator A5007452190 @default.
- W4283260084 creator A5030320353 @default.
- W4283260084 creator A5053593782 @default.
- W4283260084 creator A5086127179 @default.
- W4283260084 date "2022-06-20" @default.
- W4283260084 modified "2023-10-18" @default.
- W4283260084 title "Assessment of Artificial Intelligence Strategies to Estimate the Strength of Geopolymer Composites and Influence of Input Parameters" @default.
- W4283260084 cites W1678356000 @default.
- W4283260084 cites W1993933837 @default.
- W4283260084 cites W1997945763 @default.
- W4283260084 cites W2000361343 @default.
- W4283260084 cites W2001705326 @default.
- W4283260084 cites W2016132416 @default.
- W4283260084 cites W2022525371 @default.
- W4283260084 cites W2032962877 @default.
- W4283260084 cites W2036935895 @default.
- W4283260084 cites W2038808304 @default.
- W4283260084 cites W2042607402 @default.
- W4283260084 cites W2045746104 @default.
- W4283260084 cites W2065611868 @default.
- W4283260084 cites W2076669121 @default.
- W4283260084 cites W2093234546 @default.
- W4283260084 cites W2191878375 @default.
- W4283260084 cites W2328440700 @default.
- W4283260084 cites W2331601337 @default.
- W4283260084 cites W2371638596 @default.
- W4283260084 cites W2494983366 @default.
- W4283260084 cites W2591368872 @default.
- W4283260084 cites W2594967417 @default.
- W4283260084 cites W2609735027 @default.
- W4283260084 cites W2737323786 @default.
- W4283260084 cites W2781984933 @default.
- W4283260084 cites W2795912936 @default.
- W4283260084 cites W2811415856 @default.
- W4283260084 cites W2883705788 @default.
- W4283260084 cites W2893769615 @default.
- W4283260084 cites W2913615002 @default.
- W4283260084 cites W2917355953 @default.
- W4283260084 cites W2921499992 @default.
- W4283260084 cites W2923370583 @default.
- W4283260084 cites W2938216486 @default.
- W4283260084 cites W2945966691 @default.
- W4283260084 cites W2970584645 @default.
- W4283260084 cites W2979829384 @default.
- W4283260084 cites W2995123280 @default.
- W4283260084 cites W2999615587 @default.
- W4283260084 cites W3006558275 @default.
- W4283260084 cites W3024099069 @default.
- W4283260084 cites W3037548423 @default.
- W4283260084 cites W3038033549 @default.
- W4283260084 cites W3087991416 @default.
- W4283260084 cites W3103591274 @default.
- W4283260084 cites W3119446673 @default.
- W4283260084 cites W3125850143 @default.
- W4283260084 cites W3141400101 @default.
- W4283260084 cites W3141478277 @default.
- W4283260084 cites W3173216349 @default.
- W4283260084 cites W3174706826 @default.
- W4283260084 cites W3176440984 @default.
- W4283260084 cites W3180182061 @default.
- W4283260084 cites W3182063184 @default.
- W4283260084 cites W3184697131 @default.
- W4283260084 cites W3185556926 @default.
- W4283260084 cites W3193555877 @default.
- W4283260084 cites W3195093833 @default.
- W4283260084 cites W3200255725 @default.
- W4283260084 cites W3200945331 @default.
- W4283260084 cites W3202180088 @default.
- W4283260084 cites W3203486282 @default.
- W4283260084 cites W3203897832 @default.
- W4283260084 cites W3210910752 @default.
- W4283260084 cites W3215177998 @default.
- W4283260084 cites W3215871833 @default.
- W4283260084 cites W4200036493 @default.
- W4283260084 cites W4200440573 @default.
- W4283260084 cites W4200624155 @default.
- W4283260084 cites W4205538384 @default.
- W4283260084 cites W4210264453 @default.
- W4283260084 cites W4211013204 @default.
- W4283260084 cites W4213426031 @default.
- W4283260084 cites W4214887963 @default.
- W4283260084 cites W4220889564 @default.
- W4283260084 cites W4220993526 @default.
- W4283260084 cites W4223561025 @default.
- W4283260084 cites W4223602733 @default.
- W4283260084 cites W4223935544 @default.
- W4283260084 cites W4224982712 @default.
- W4283260084 cites W4224999508 @default.
- W4283260084 cites W4280547473 @default.
- W4283260084 cites W4281479674 @default.
- W4283260084 cites W90696332 @default.
- W4283260084 doi "https://doi.org/10.3390/polym14122509" @default.
- W4283260084 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35746085" @default.
- W4283260084 hasPublicationYear "2022" @default.