Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283263289> ?p ?o ?g. }
- W4283263289 endingPage "691" @default.
- W4283263289 startingPage "691" @default.
- W4283263289 abstract "<ns4:p><ns4:bold>Background: </ns4:bold>Artificial Intelligence (AI) and data science research are promising tools to better inform public policy and public health responses, promoting automation and affordability. During the COVID-19 pandemic, AI has been an aid to forecast outbreak spread globally. The overall aim of the study is to contribute to the ongoing public health, socioeconomic, and communication challenges caused by COVID-19.</ns4:p><ns4:p> <ns4:bold>Protocol: </ns4:bold>COLEV is a five-pronged interdisciplinary mixed methods project based on AI and data science from an inclusive perspective of age and gender to develop, implement, and communicate useful evidence for COVID-19-related response and recovery in Colombia. The first objective is identification of stakeholders’ preferences, needs, and their use of AI and data science relative to other forms of evidence. The second objective will develop locally relevant mathematical models that will shed light on the possible impact, trajectories, geographical spread, and uncertainties of disease progression as well as risk assessment. The third objective focuses on estimating the effect of COVID-19 on other diseases, gender disparities and health system saturation. The fourth objective aims to analyze popular social networks to identify health-related trending interest and users that act as ‘super spreaders’ for information and misinformation. Finally, the fifth objective, aims at designing disruptive cross-media communication strategies to confront mis- and dis-information around COVID-19. To understand stakeholders’ perspectives, we will use semi-structured interviews and ethnographic work. Daily cases and deaths of COVID-19 reported from the National Surveillance System (INS) of Colombia will be used for quantitative analysis, and data regarding the online conversation will be obtained from Facebook and Twitter.</ns4:p><ns4:p> <ns4:bold>Conclusions: </ns4:bold>COLEV intends to facilitate the dialogue between academia and health policymakers. The results of COLEV will inform on the responsible, safe and ethical use of AI and data science for decision-making in the context of sanitary emergencies in deeply unequal settings.</ns4:p>" @default.
- W4283263289 created "2022-06-23" @default.
- W4283263289 creator A5014633150 @default.
- W4283263289 creator A5021965804 @default.
- W4283263289 creator A5033232375 @default.
- W4283263289 creator A5035790472 @default.
- W4283263289 creator A5047872039 @default.
- W4283263289 creator A5059181371 @default.
- W4283263289 creator A5059716764 @default.
- W4283263289 creator A5062123552 @default.
- W4283263289 creator A5063604648 @default.
- W4283263289 creator A5075146705 @default.
- W4283263289 creator A5078349457 @default.
- W4283263289 creator A5086040915 @default.
- W4283263289 creator A5091739763 @default.
- W4283263289 date "2022-06-22" @default.
- W4283263289 modified "2023-10-17" @default.
- W4283263289 title "A mixed-methods study on the design of Artificial Intelligence and data science-based strategies to inform public health responses to COVID-19 in different local health ecosystems: A study protocol for COLEV" @default.
- W4283263289 cites W1867956057 @default.
- W4283263289 cites W1924618820 @default.
- W4283263289 cites W2264375300 @default.
- W4283263289 cites W2508601499 @default.
- W4283263289 cites W3013758358 @default.
- W4283263289 cites W3014820715 @default.
- W4283263289 cites W3015371627 @default.
- W4283263289 cites W3016236951 @default.
- W4283263289 cites W3039182478 @default.
- W4283263289 cites W3046751698 @default.
- W4283263289 cites W3048848247 @default.
- W4283263289 cites W3111296862 @default.
- W4283263289 cites W3123301468 @default.
- W4283263289 cites W3136465803 @default.
- W4283263289 cites W3139358025 @default.
- W4283263289 cites W3170253459 @default.
- W4283263289 cites W3183299076 @default.
- W4283263289 doi "https://doi.org/10.12688/f1000research.110958.1" @default.
- W4283263289 hasPublicationYear "2022" @default.
- W4283263289 type Work @default.
- W4283263289 citedByCount "0" @default.
- W4283263289 crossrefType "journal-article" @default.
- W4283263289 hasAuthorship W4283263289A5014633150 @default.
- W4283263289 hasAuthorship W4283263289A5021965804 @default.
- W4283263289 hasAuthorship W4283263289A5033232375 @default.
- W4283263289 hasAuthorship W4283263289A5035790472 @default.
- W4283263289 hasAuthorship W4283263289A5047872039 @default.
- W4283263289 hasAuthorship W4283263289A5059181371 @default.
- W4283263289 hasAuthorship W4283263289A5059716764 @default.
- W4283263289 hasAuthorship W4283263289A5062123552 @default.
- W4283263289 hasAuthorship W4283263289A5063604648 @default.
- W4283263289 hasAuthorship W4283263289A5075146705 @default.
- W4283263289 hasAuthorship W4283263289A5078349457 @default.
- W4283263289 hasAuthorship W4283263289A5086040915 @default.
- W4283263289 hasAuthorship W4283263289A5091739763 @default.
- W4283263289 hasBestOaLocation W42832632891 @default.
- W4283263289 hasConcept C136764020 @default.
- W4283263289 hasConcept C138816342 @default.
- W4283263289 hasConcept C142724271 @default.
- W4283263289 hasConcept C15744967 @default.
- W4283263289 hasConcept C159110408 @default.
- W4283263289 hasConcept C197352329 @default.
- W4283263289 hasConcept C2776990098 @default.
- W4283263289 hasConcept C2779134260 @default.
- W4283263289 hasConcept C3008058167 @default.
- W4283263289 hasConcept C38652104 @default.
- W4283263289 hasConcept C41008148 @default.
- W4283263289 hasConcept C43169469 @default.
- W4283263289 hasConcept C524204448 @default.
- W4283263289 hasConcept C59822182 @default.
- W4283263289 hasConcept C71924100 @default.
- W4283263289 hasConcept C86803240 @default.
- W4283263289 hasConcept C89623803 @default.
- W4283263289 hasConcept C99454951 @default.
- W4283263289 hasConceptScore W4283263289C136764020 @default.
- W4283263289 hasConceptScore W4283263289C138816342 @default.
- W4283263289 hasConceptScore W4283263289C142724271 @default.
- W4283263289 hasConceptScore W4283263289C15744967 @default.
- W4283263289 hasConceptScore W4283263289C159110408 @default.
- W4283263289 hasConceptScore W4283263289C197352329 @default.
- W4283263289 hasConceptScore W4283263289C2776990098 @default.
- W4283263289 hasConceptScore W4283263289C2779134260 @default.
- W4283263289 hasConceptScore W4283263289C3008058167 @default.
- W4283263289 hasConceptScore W4283263289C38652104 @default.
- W4283263289 hasConceptScore W4283263289C41008148 @default.
- W4283263289 hasConceptScore W4283263289C43169469 @default.
- W4283263289 hasConceptScore W4283263289C524204448 @default.
- W4283263289 hasConceptScore W4283263289C59822182 @default.
- W4283263289 hasConceptScore W4283263289C71924100 @default.
- W4283263289 hasConceptScore W4283263289C86803240 @default.
- W4283263289 hasConceptScore W4283263289C89623803 @default.
- W4283263289 hasConceptScore W4283263289C99454951 @default.
- W4283263289 hasLocation W42832632891 @default.
- W4283263289 hasOpenAccess W4283263289 @default.
- W4283263289 hasPrimaryLocation W42832632891 @default.
- W4283263289 hasRelatedWork W2748952813 @default.
- W4283263289 hasRelatedWork W2899084033 @default.
- W4283263289 hasRelatedWork W3047652625 @default.
- W4283263289 hasRelatedWork W3098366301 @default.
- W4283263289 hasRelatedWork W4205226510 @default.