Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283266503> ?p ?o ?g. }
- W4283266503 endingPage "520" @default.
- W4283266503 startingPage "510" @default.
- W4283266503 abstract "The desire to reduce the dependence on curated, labeled datasets and to leverage the vast quantities of unlabeled data has triggered renewed interest in unsupervised (or self-supervised) learning algorithms. Despite improved performance due to approaches such as the identification of disentangled latent representations, contrastive learning and clustering optimizations, unsupervised machine learning still falls short of its hypothesized potential as a breakthrough paradigm enabling generally intelligent systems. Inspiration from cognitive (neuro)science has been based mostly on adult learners with access to labels and a vast amount of prior knowledge. To push unsupervised machine learning forward, we argue that developmental science of infant cognition might hold the key to unlocking the next generation of unsupervised learning approaches. We identify three crucial factors enabling infants’ quality and speed of learning: (1) babies’ information processing is guided and constrained; (2) babies are learning from diverse, multimodal inputs; and (3) babies’ input is shaped by development and active learning. We assess the extent to which these insights from infant learning have already been exploited in machine learning, examine how closely these implementations resemble the core insights, and propose how further adoption of these factors can give rise to previously unseen performance levels in unsupervised learning. Unsupervised machine learning algorithms reduce the dependence on curated, labeled datasets that are characteristic of supervised machine learning. The authors argue that the developmental science of infant cognition could inform the design of unsupervised machine learning approaches." @default.
- W4283266503 created "2022-06-23" @default.
- W4283266503 creator A5009626533 @default.
- W4283266503 creator A5074157118 @default.
- W4283266503 creator A5076175353 @default.
- W4283266503 date "2022-06-22" @default.
- W4283266503 modified "2023-10-16" @default.
- W4283266503 title "Lessons from infant learning for unsupervised machine learning" @default.
- W4283266503 cites W1522141606 @default.
- W4283266503 cites W1680245855 @default.
- W4283266503 cites W1763311249 @default.
- W4283266503 cites W1903029394 @default.
- W4283266503 cites W1930222993 @default.
- W4283266503 cites W1964261477 @default.
- W4283266503 cites W1968126888 @default.
- W4283266503 cites W1968307396 @default.
- W4283266503 cites W1972179573 @default.
- W4283266503 cites W1972894714 @default.
- W4283266503 cites W1975192282 @default.
- W4283266503 cites W1979539191 @default.
- W4283266503 cites W1980054804 @default.
- W4283266503 cites W1980862600 @default.
- W4283266503 cites W1982071874 @default.
- W4283266503 cites W1990486914 @default.
- W4283266503 cites W1991925383 @default.
- W4283266503 cites W1993970284 @default.
- W4283266503 cites W1995341919 @default.
- W4283266503 cites W2005558007 @default.
- W4283266503 cites W2009841905 @default.
- W4283266503 cites W2010186522 @default.
- W4283266503 cites W2011145053 @default.
- W4283266503 cites W2023906772 @default.
- W4283266503 cites W2026012689 @default.
- W4283266503 cites W2028734328 @default.
- W4283266503 cites W2037530582 @default.
- W4283266503 cites W2040870580 @default.
- W4283266503 cites W2050215536 @default.
- W4283266503 cites W2051630621 @default.
- W4283266503 cites W2056694524 @default.
- W4283266503 cites W2057256606 @default.
- W4283266503 cites W2060277733 @default.
- W4283266503 cites W2061150508 @default.
- W4283266503 cites W2066213611 @default.
- W4283266503 cites W2068155923 @default.
- W4283266503 cites W2077552569 @default.
- W4283266503 cites W2088110681 @default.
- W4283266503 cites W2093862240 @default.
- W4283266503 cites W2097117768 @default.
- W4283266503 cites W2097413287 @default.
- W4283266503 cites W2098580305 @default.
- W4283266503 cites W2099092555 @default.
- W4283266503 cites W2101524054 @default.
- W4283266503 cites W2102844904 @default.
- W4283266503 cites W2103882674 @default.
- W4283266503 cites W2104752510 @default.
- W4283266503 cites W2106304233 @default.
- W4283266503 cites W2109864536 @default.
- W4283266503 cites W2110485445 @default.
- W4283266503 cites W2111706254 @default.
- W4283266503 cites W2112184938 @default.
- W4283266503 cites W2113122939 @default.
- W4283266503 cites W2113359311 @default.
- W4283266503 cites W2113885007 @default.
- W4283266503 cites W2114029866 @default.
- W4283266503 cites W2116522068 @default.
- W4283266503 cites W2117392667 @default.
- W4283266503 cites W2117539524 @default.
- W4283266503 cites W2118335243 @default.
- W4283266503 cites W2123713131 @default.
- W4283266503 cites W2124094476 @default.
- W4283266503 cites W2124977148 @default.
- W4283266503 cites W2125440156 @default.
- W4283266503 cites W2127716180 @default.
- W4283266503 cites W2132573777 @default.
- W4283266503 cites W2135680706 @default.
- W4283266503 cites W2136922672 @default.
- W4283266503 cites W2144599947 @default.
- W4283266503 cites W2146326139 @default.
- W4283266503 cites W2150708609 @default.
- W4283266503 cites W2150785937 @default.
- W4283266503 cites W2151834591 @default.
- W4283266503 cites W2154600605 @default.
- W4283266503 cites W2156583096 @default.
- W4283266503 cites W2162294897 @default.
- W4283266503 cites W2163922914 @default.
- W4283266503 cites W2164234123 @default.
- W4283266503 cites W2165940037 @default.
- W4283266503 cites W2175815001 @default.
- W4283266503 cites W2184108606 @default.
- W4283266503 cites W2194775991 @default.
- W4283266503 cites W2226108846 @default.
- W4283266503 cites W2274405424 @default.
- W4283266503 cites W2296073425 @default.
- W4283266503 cites W2320331759 @default.
- W4283266503 cites W2339621095 @default.
- W4283266503 cites W2344467524 @default.
- W4283266503 cites W2402314065 @default.
- W4283266503 cites W2416573875 @default.