Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283267615> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4283267615 abstract "The calculation of so called brain age has been an emerging biomarker in aging research. Data suggests that discrepancies between chronological age and the predicted age of the brain may be predictive of mortality and morbidity (for review, see Cole, Marioni, Harris, & Deary, 2019). However, with these promising results come technical complexities of how to calculate brain age. Various groups have deployed methods leveraging different statistical approaches, often crafting novel algorithms for assessing this biomarker. There remain many open questions about the reliability, collinearity, and predictive power of different algorithms. Here, we complete a rigorous systematic comparison of three commonly used, previously published brain age algorithms (XGBoost, brainageR, and DeepBrainNet) to serve as a foundation for future applied research. First, using multiple datasets with repeated MRI scans, we calculated two metrics of reliability (intraclass correlations and Bland Altman bias). We then considered correlations between brain age variables, chronological age, biological sex, and image quality. We also calculated the magnitude of collinearity between approaches. Finally, we used canonical regression and machine learning approaches to identify significant predictors across brain age algorithms related to clinical diagnoses of mild cognitive impairment or Alzheimer's Disease. Using a large sample (N=2557), we find all three commonly used brain age algorithms demonstrate excellent reliability (r>.9). We also note that brainageR and DeepBrainNet are reasonably correlated with one another, and that the XGBoost brain age is strongly related to image quality. Finally, and notably, we find that XGBoost brain age calculations were more sensitive to the detection of clinical diagnoses of mild cognitive impairment or Alzheimer's Disease. We close this work with recommendations for future research studies focused on brain age." @default.
- W4283267615 created "2022-06-23" @default.
- W4283267615 creator A5020406924 @default.
- W4283267615 creator A5032011346 @default.
- W4283267615 creator A5048158896 @default.
- W4283267615 creator A5063914249 @default.
- W4283267615 creator A5077150421 @default.
- W4283267615 creator A5081156291 @default.
- W4283267615 date "2022-06-21" @default.
- W4283267615 modified "2023-10-15" @default.
- W4283267615 title "Probing Multiple Algorithms to Calculate Brain Age: Examining Reliability, Relations with Demographics, and Predictive Power" @default.
- W4283267615 doi "https://doi.org/10.1101/2022.06.17.496576" @default.
- W4283267615 hasPublicationYear "2022" @default.
- W4283267615 type Work @default.
- W4283267615 citedByCount "0" @default.
- W4283267615 crossrefType "posted-content" @default.
- W4283267615 hasAuthorship W4283267615A5020406924 @default.
- W4283267615 hasAuthorship W4283267615A5032011346 @default.
- W4283267615 hasAuthorship W4283267615A5048158896 @default.
- W4283267615 hasAuthorship W4283267615A5063914249 @default.
- W4283267615 hasAuthorship W4283267615A5077150421 @default.
- W4283267615 hasAuthorship W4283267615A5081156291 @default.
- W4283267615 hasBestOaLocation W42832676151 @default.
- W4283267615 hasConcept C104709138 @default.
- W4283267615 hasConcept C105795698 @default.
- W4283267615 hasConcept C106192678 @default.
- W4283267615 hasConcept C111472728 @default.
- W4283267615 hasConcept C11413529 @default.
- W4283267615 hasConcept C119857082 @default.
- W4283267615 hasConcept C121332964 @default.
- W4283267615 hasConcept C138885662 @default.
- W4283267615 hasConcept C154945302 @default.
- W4283267615 hasConcept C15744967 @default.
- W4283267615 hasConcept C163258240 @default.
- W4283267615 hasConcept C171606756 @default.
- W4283267615 hasConcept C2778136018 @default.
- W4283267615 hasConcept C33923547 @default.
- W4283267615 hasConcept C41008148 @default.
- W4283267615 hasConcept C43214815 @default.
- W4283267615 hasConcept C62520636 @default.
- W4283267615 hasConcept C70410870 @default.
- W4283267615 hasConceptScore W4283267615C104709138 @default.
- W4283267615 hasConceptScore W4283267615C105795698 @default.
- W4283267615 hasConceptScore W4283267615C106192678 @default.
- W4283267615 hasConceptScore W4283267615C111472728 @default.
- W4283267615 hasConceptScore W4283267615C11413529 @default.
- W4283267615 hasConceptScore W4283267615C119857082 @default.
- W4283267615 hasConceptScore W4283267615C121332964 @default.
- W4283267615 hasConceptScore W4283267615C138885662 @default.
- W4283267615 hasConceptScore W4283267615C154945302 @default.
- W4283267615 hasConceptScore W4283267615C15744967 @default.
- W4283267615 hasConceptScore W4283267615C163258240 @default.
- W4283267615 hasConceptScore W4283267615C171606756 @default.
- W4283267615 hasConceptScore W4283267615C2778136018 @default.
- W4283267615 hasConceptScore W4283267615C33923547 @default.
- W4283267615 hasConceptScore W4283267615C41008148 @default.
- W4283267615 hasConceptScore W4283267615C43214815 @default.
- W4283267615 hasConceptScore W4283267615C62520636 @default.
- W4283267615 hasConceptScore W4283267615C70410870 @default.
- W4283267615 hasLocation W42832676151 @default.
- W4283267615 hasOpenAccess W4283267615 @default.
- W4283267615 hasPrimaryLocation W42832676151 @default.
- W4283267615 hasRelatedWork W2077437308 @default.
- W4283267615 hasRelatedWork W2089345451 @default.
- W4283267615 hasRelatedWork W2748952813 @default.
- W4283267615 hasRelatedWork W2899084033 @default.
- W4283267615 hasRelatedWork W2902984384 @default.
- W4283267615 hasRelatedWork W2961085424 @default.
- W4283267615 hasRelatedWork W3039145035 @default.
- W4283267615 hasRelatedWork W3119715496 @default.
- W4283267615 hasRelatedWork W4306674287 @default.
- W4283267615 hasRelatedWork W4224009465 @default.
- W4283267615 isParatext "false" @default.
- W4283267615 isRetracted "false" @default.
- W4283267615 workType "article" @default.