Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283268515> ?p ?o ?g. }
Showing items 1 to 71 of
71
with 100 items per page.
- W4283268515 abstract "Objective: Classifying free-text from historical databases into research-compatible formats is a barrier for clinicians undertaking audit and research projects. The aim of this study was to evaluate the accuracy and speed of an interactive active machine-learning model training methodology for classifying free text from clinical notes into customised researcher-defined categories. Study Design and Setting: A user interface for medical experts to train and evaluate the algorithm was created. Data requiring coding in the form of two databases of free-text clinical notes. Medical experts defined categories relevant to research projects and performed label-train-evaluate loops on the training data set. A separate dataset was used for validation, with the medical experts blinded to the label given by the algorithm. The first dataset was 32,034 death certificate records from Northern Territory Births Deaths and Marriages, which were coded into 3 categories: haemorrhagic stroke, ischaemic stroke or no stroke. The second dataset was 12,039 recorded episodes of aeromedical retrieval from two prehospital and retrieval services in Northern Territory, Australia, which were coded into 5 categories: medical, surgical, trauma, obstetric or psychiatric. Results: For the first dataset, macro-accuracy of the algorithm was 94.7%. For the second dataset, macro-accuracy was 92.4%. The time taken to develop and train the algorithm was 124 minutes for the death certificate coding, and 144 minutes for the aeromedical retrieval coding. Conclusions: This machine-learning training method was able to classify free-text clinical notes quickly and accurately from two different health datasets into categories of relevance to clinicians undertaking health service research." @default.
- W4283268515 created "2022-06-23" @default.
- W4283268515 creator A5014606195 @default.
- W4283268515 creator A5043049106 @default.
- W4283268515 creator A5065845532 @default.
- W4283268515 creator A5065909168 @default.
- W4283268515 date "2022-06-21" @default.
- W4283268515 modified "2023-10-16" @default.
- W4283268515 title "A method for rapid machine learning development for data mining with Doctor-In-The-Loop" @default.
- W4283268515 doi "https://doi.org/10.1101/2022.06.19.22276610" @default.
- W4283268515 hasPublicationYear "2022" @default.
- W4283268515 type Work @default.
- W4283268515 citedByCount "0" @default.
- W4283268515 crossrefType "posted-content" @default.
- W4283268515 hasAuthorship W4283268515A5014606195 @default.
- W4283268515 hasAuthorship W4283268515A5043049106 @default.
- W4283268515 hasAuthorship W4283268515A5065845532 @default.
- W4283268515 hasAuthorship W4283268515A5065909168 @default.
- W4283268515 hasBestOaLocation W42832685151 @default.
- W4283268515 hasConcept C105795698 @default.
- W4283268515 hasConcept C11413529 @default.
- W4283268515 hasConcept C119857082 @default.
- W4283268515 hasConcept C124101348 @default.
- W4283268515 hasConcept C126838900 @default.
- W4283268515 hasConcept C142724271 @default.
- W4283268515 hasConcept C154945302 @default.
- W4283268515 hasConcept C162324750 @default.
- W4283268515 hasConcept C179518139 @default.
- W4283268515 hasConcept C187736073 @default.
- W4283268515 hasConcept C195910791 @default.
- W4283268515 hasConcept C199521495 @default.
- W4283268515 hasConcept C23123220 @default.
- W4283268515 hasConcept C33923547 @default.
- W4283268515 hasConcept C41008148 @default.
- W4283268515 hasConcept C534262118 @default.
- W4283268515 hasConcept C71924100 @default.
- W4283268515 hasConcept C96865113 @default.
- W4283268515 hasConceptScore W4283268515C105795698 @default.
- W4283268515 hasConceptScore W4283268515C11413529 @default.
- W4283268515 hasConceptScore W4283268515C119857082 @default.
- W4283268515 hasConceptScore W4283268515C124101348 @default.
- W4283268515 hasConceptScore W4283268515C126838900 @default.
- W4283268515 hasConceptScore W4283268515C142724271 @default.
- W4283268515 hasConceptScore W4283268515C154945302 @default.
- W4283268515 hasConceptScore W4283268515C162324750 @default.
- W4283268515 hasConceptScore W4283268515C179518139 @default.
- W4283268515 hasConceptScore W4283268515C187736073 @default.
- W4283268515 hasConceptScore W4283268515C195910791 @default.
- W4283268515 hasConceptScore W4283268515C199521495 @default.
- W4283268515 hasConceptScore W4283268515C23123220 @default.
- W4283268515 hasConceptScore W4283268515C33923547 @default.
- W4283268515 hasConceptScore W4283268515C41008148 @default.
- W4283268515 hasConceptScore W4283268515C534262118 @default.
- W4283268515 hasConceptScore W4283268515C71924100 @default.
- W4283268515 hasConceptScore W4283268515C96865113 @default.
- W4283268515 hasLocation W42832685151 @default.
- W4283268515 hasOpenAccess W4283268515 @default.
- W4283268515 hasPrimaryLocation W42832685151 @default.
- W4283268515 hasRelatedWork W1965098310 @default.
- W4283268515 hasRelatedWork W1981943722 @default.
- W4283268515 hasRelatedWork W2104333617 @default.
- W4283268515 hasRelatedWork W2406037887 @default.
- W4283268515 hasRelatedWork W2409662604 @default.
- W4283268515 hasRelatedWork W2410343017 @default.
- W4283268515 hasRelatedWork W2981850339 @default.
- W4283268515 hasRelatedWork W4309637067 @default.
- W4283268515 hasRelatedWork W4316082230 @default.
- W4283268515 hasRelatedWork W72816711 @default.
- W4283268515 isParatext "false" @default.
- W4283268515 isRetracted "false" @default.
- W4283268515 workType "article" @default.