Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283268712> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4283268712 abstract "Abstract In recent times, we have seen an exponential rise in different chronic diseases due to our unhealthy lifestyles. Cardio disease is the most common and life-threatening among all diseases, which contributes to a very high mortality rate. Accurate detection of cardio disease at an early stage is vital to save the lives of people. Most of the existing cardiovascular disease detection systems suffer from lower performance and efficiency due to redundant attributes, dimensionality curse, imbalance, and noisy datasets. In this work, we proposed a novel convolutional neural networks-based system (CNN-cardioAssistant) that predicts cardiovascular disease in patients. Recursive feature selection (RFE) is employed to select more prominent features from the clinical data of cardio patients. The selected features are then used to train the proposed CNN-CardioAssistant as well as 11 different classifiers i.e., support vector machine (SVM), Random Forest, Decision Tree, logistic regression, Naïve Bayes, K-Nearest Neighbor, XGboost, Multi-layer Perceptron, Gaussian process classifier, Adaboost, and Quadratic discriminant analysis separately for cardio disease prediction. We compared the results of all the methods on three subsets of features i.e., 6,8, and 15 for each dataset. The features selection method provides optimal subsets of features that can reliably be used to predict cardiovascular disease with the highest accuracy. Experimental results on three different cardio datasets i.e., Public Health, Framingham, and Z-Alizadeh sani clearly demonstrate that the proposed CNN-CardioAssistant system has superior performance against the existing state-of-the-art methods." @default.
- W4283268712 created "2022-06-23" @default.
- W4283268712 creator A5033656380 @default.
- W4283268712 creator A5041533785 @default.
- W4283268712 creator A5047345245 @default.
- W4283268712 creator A5072368667 @default.
- W4283268712 creator A5084994406 @default.
- W4283268712 date "2022-06-21" @default.
- W4283268712 modified "2023-10-18" @default.
- W4283268712 title "CNN-CardioAssistant: Deep Convolutional Neural Network and Recursive Feature Elimination Method for Heart Disease Detection" @default.
- W4283268712 doi "https://doi.org/10.21203/rs.3.rs-1721779/v1" @default.
- W4283268712 hasPublicationYear "2022" @default.
- W4283268712 type Work @default.
- W4283268712 citedByCount "1" @default.
- W4283268712 countsByYear W42832687122023 @default.
- W4283268712 crossrefType "posted-content" @default.
- W4283268712 hasAuthorship W4283268712A5033656380 @default.
- W4283268712 hasAuthorship W4283268712A5041533785 @default.
- W4283268712 hasAuthorship W4283268712A5047345245 @default.
- W4283268712 hasAuthorship W4283268712A5072368667 @default.
- W4283268712 hasAuthorship W4283268712A5084994406 @default.
- W4283268712 hasBestOaLocation W42832687121 @default.
- W4283268712 hasConcept C119857082 @default.
- W4283268712 hasConcept C12267149 @default.
- W4283268712 hasConcept C141404830 @default.
- W4283268712 hasConcept C148483581 @default.
- W4283268712 hasConcept C153180895 @default.
- W4283268712 hasConcept C154945302 @default.
- W4283268712 hasConcept C169258074 @default.
- W4283268712 hasConcept C41008148 @default.
- W4283268712 hasConcept C50644808 @default.
- W4283268712 hasConcept C52001869 @default.
- W4283268712 hasConcept C60908668 @default.
- W4283268712 hasConcept C69738355 @default.
- W4283268712 hasConcept C81363708 @default.
- W4283268712 hasConcept C84525736 @default.
- W4283268712 hasConcept C95623464 @default.
- W4283268712 hasConceptScore W4283268712C119857082 @default.
- W4283268712 hasConceptScore W4283268712C12267149 @default.
- W4283268712 hasConceptScore W4283268712C141404830 @default.
- W4283268712 hasConceptScore W4283268712C148483581 @default.
- W4283268712 hasConceptScore W4283268712C153180895 @default.
- W4283268712 hasConceptScore W4283268712C154945302 @default.
- W4283268712 hasConceptScore W4283268712C169258074 @default.
- W4283268712 hasConceptScore W4283268712C41008148 @default.
- W4283268712 hasConceptScore W4283268712C50644808 @default.
- W4283268712 hasConceptScore W4283268712C52001869 @default.
- W4283268712 hasConceptScore W4283268712C60908668 @default.
- W4283268712 hasConceptScore W4283268712C69738355 @default.
- W4283268712 hasConceptScore W4283268712C81363708 @default.
- W4283268712 hasConceptScore W4283268712C84525736 @default.
- W4283268712 hasConceptScore W4283268712C95623464 @default.
- W4283268712 hasLocation W42832687121 @default.
- W4283268712 hasOpenAccess W4283268712 @default.
- W4283268712 hasPrimaryLocation W42832687121 @default.
- W4283268712 hasRelatedWork W2911198546 @default.
- W4283268712 hasRelatedWork W3168994312 @default.
- W4283268712 hasRelatedWork W3193301557 @default.
- W4283268712 hasRelatedWork W3204641204 @default.
- W4283268712 hasRelatedWork W4200057378 @default.
- W4283268712 hasRelatedWork W4249229055 @default.
- W4283268712 hasRelatedWork W4292651891 @default.
- W4283268712 hasRelatedWork W4293069612 @default.
- W4283268712 hasRelatedWork W4294976306 @default.
- W4283268712 hasRelatedWork W4362588981 @default.
- W4283268712 isParatext "false" @default.
- W4283268712 isRetracted "false" @default.
- W4283268712 workType "article" @default.