Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283271954> ?p ?o ?g. }
- W4283271954 endingPage "102818" @default.
- W4283271954 startingPage "102818" @default.
- W4283271954 abstract "The normalized difference vegetation index (NDVI) is crucial to many sustainable agricultural practices such as vegetation monitoring and health evaluation. However, optical remote sensing data often suffer from a large amount of missing information due to sensor failures and harsh atmospheric conditions. The synthetic aperture radar (SAR) offers a new approach to filling in missing optical data based on its excessive revisit density and its potential to image without interference from clouds and rain. Due to the difference in imaging mechanisms between SAR and optical sensors, it is very difficult to fuse the data. This paper developed an advanced deep learning Spatio-temporal fusion method, i.e., Transformer Temporal-spatial Model (TTSM), to synergize the SAR and optical time-series to reconstruct vegetation NDVI time series in cloudy regions. The proposed multi-head attention and end-to-end architecture achieved satisfactory accuracy (R2 greater than 0.88), outperforming the existing deep learning solutions. Extensive experiments were carried out to evaluate the TTSM method on large-scale areas (the spatial scale of megapixels) in northeast China with the main vegetation types of crops and forests. The R2, SSIM, RMSE, NRMSE, and MAE of our prediction results were 0.88, 0.80, 0.06, 0.16, and 0.05, respectively. The influence of training sample size was investigated through a transfer learning study, and the result indicated that the model had good generalizability. Overall, our proposed method can fill in the gap of optical data at an extensive regional scope over the vegetated area using SAR." @default.
- W4283271954 created "2022-06-23" @default.
- W4283271954 creator A5005698391 @default.
- W4283271954 creator A5015868975 @default.
- W4283271954 creator A5020562917 @default.
- W4283271954 creator A5020713851 @default.
- W4283271954 creator A5027955056 @default.
- W4283271954 creator A5032584289 @default.
- W4283271954 creator A5039880991 @default.
- W4283271954 creator A5041978290 @default.
- W4283271954 creator A5044246694 @default.
- W4283271954 creator A5044573130 @default.
- W4283271954 date "2022-08-01" @default.
- W4283271954 modified "2023-09-24" @default.
- W4283271954 title "Fusion of optical and SAR images based on deep learning to reconstruct vegetation NDVI time series in cloud-prone regions" @default.
- W4283271954 cites W1489722801 @default.
- W4283271954 cites W1491321328 @default.
- W4283271954 cites W1655403841 @default.
- W4283271954 cites W1978145340 @default.
- W4283271954 cites W1984670836 @default.
- W4283271954 cites W1998438756 @default.
- W4283271954 cites W2017773864 @default.
- W4283271954 cites W2027371372 @default.
- W4283271954 cites W2056435747 @default.
- W4283271954 cites W2064675550 @default.
- W4283271954 cites W2095897558 @default.
- W4283271954 cites W2102887902 @default.
- W4283271954 cites W2113350326 @default.
- W4283271954 cites W2117853853 @default.
- W4283271954 cites W2118417501 @default.
- W4283271954 cites W2142565235 @default.
- W4283271954 cites W2143612262 @default.
- W4283271954 cites W2163642873 @default.
- W4283271954 cites W2166726478 @default.
- W4283271954 cites W2253429366 @default.
- W4283271954 cites W2412588858 @default.
- W4283271954 cites W2615543373 @default.
- W4283271954 cites W2618530766 @default.
- W4283271954 cites W2745131289 @default.
- W4283271954 cites W2767886251 @default.
- W4283271954 cites W2768136227 @default.
- W4283271954 cites W2770155218 @default.
- W4283271954 cites W2772752821 @default.
- W4283271954 cites W2778936354 @default.
- W4283271954 cites W2782522152 @default.
- W4283271954 cites W2792478479 @default.
- W4283271954 cites W2891782712 @default.
- W4283271954 cites W2907663452 @default.
- W4283271954 cites W2920594132 @default.
- W4283271954 cites W2953239899 @default.
- W4283271954 cites W2984811207 @default.
- W4283271954 cites W2999000103 @default.
- W4283271954 cites W3023727915 @default.
- W4283271954 cites W3035805339 @default.
- W4283271954 cites W3037944168 @default.
- W4283271954 cites W3087408134 @default.
- W4283271954 cites W3127794790 @default.
- W4283271954 cites W3131348115 @default.
- W4283271954 cites W3135734055 @default.
- W4283271954 cites W3138000966 @default.
- W4283271954 cites W3157994709 @default.
- W4283271954 cites W3163612517 @default.
- W4283271954 cites W3175044012 @default.
- W4283271954 cites W3175633940 @default.
- W4283271954 cites W3182541553 @default.
- W4283271954 cites W4240485910 @default.
- W4283271954 cites W639708223 @default.
- W4283271954 doi "https://doi.org/10.1016/j.jag.2022.102818" @default.
- W4283271954 hasPublicationYear "2022" @default.
- W4283271954 type Work @default.
- W4283271954 citedByCount "0" @default.
- W4283271954 crossrefType "journal-article" @default.
- W4283271954 hasAuthorship W4283271954A5005698391 @default.
- W4283271954 hasAuthorship W4283271954A5015868975 @default.
- W4283271954 hasAuthorship W4283271954A5020562917 @default.
- W4283271954 hasAuthorship W4283271954A5020713851 @default.
- W4283271954 hasAuthorship W4283271954A5027955056 @default.
- W4283271954 hasAuthorship W4283271954A5032584289 @default.
- W4283271954 hasAuthorship W4283271954A5039880991 @default.
- W4283271954 hasAuthorship W4283271954A5041978290 @default.
- W4283271954 hasAuthorship W4283271954A5044246694 @default.
- W4283271954 hasAuthorship W4283271954A5044573130 @default.
- W4283271954 hasBestOaLocation W42832719541 @default.
- W4283271954 hasConcept C108583219 @default.
- W4283271954 hasConcept C111919701 @default.
- W4283271954 hasConcept C119857082 @default.
- W4283271954 hasConcept C142724271 @default.
- W4283271954 hasConcept C151406439 @default.
- W4283271954 hasConcept C1549246 @default.
- W4283271954 hasConcept C154945302 @default.
- W4283271954 hasConcept C18903297 @default.
- W4283271954 hasConcept C205649164 @default.
- W4283271954 hasConcept C25989453 @default.
- W4283271954 hasConcept C2776133958 @default.
- W4283271954 hasConcept C39432304 @default.
- W4283271954 hasConcept C41008148 @default.
- W4283271954 hasConcept C62649853 @default.
- W4283271954 hasConcept C71924100 @default.