Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283273555> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4283273555 endingPage "6297" @default.
- W4283273555 startingPage "6297" @default.
- W4283273555 abstract "Internet addiction (IA), as a new and often unrecognized psychosocial disorder, endangers people’s health and their lives. However, the common biometric analysis based on the combination of EEG signals and results of questionnaires is not quantitative, and thus difficult to ensure a specific biomarker. This work aims to develop a deep learning algorithm (no need to identify biomarkers) used for diagnosing IA and evaluating therapy efficacy. Herein, a five-layer CNN model combined with a fast Fourier transform is proposed to diagnose IA quantitatively. This algorithm is validated in the Lemon dataset by using it to process raw data, full spectral power, and alpha-beta-gamma spectral power (related to IA). In contrast to alpha-beta-gamma spectral power, the results based on full spectral power show better performance (87.59% accuracy, 88.80% sensitivity, and 86.41% specificity), which confirms that the proposed algorithm can diagnose IA without biomarkers. In addition, this proposed CNN model presents obvious advantages in processing raw data, achieving 81.1% accuracy. Such results verify that this method can contribute to the reduction of diagnosis time and be potentially used in real-time health monitoring systems. This work provides a quantitative approach to diagnose IA and evaluate therapy efficacy, as a general strategy, and can be widely used in other disorder diagnoses that affect EEG signals, such as psychiatric disorders, substance dependence, and depression." @default.
- W4283273555 created "2022-06-23" @default.
- W4283273555 creator A5023777406 @default.
- W4283273555 creator A5028927719 @default.
- W4283273555 creator A5064255960 @default.
- W4283273555 creator A5079059862 @default.
- W4283273555 creator A5082509767 @default.
- W4283273555 date "2022-06-21" @default.
- W4283273555 modified "2023-09-30" @default.
- W4283273555 title "EEG Signals Based Internet Addiction Diagnosis Using Convolutional Neural Networks" @default.
- W4283273555 cites W1981976602 @default.
- W4283273555 cites W2000881598 @default.
- W4283273555 cites W2009176789 @default.
- W4283273555 cites W2091644467 @default.
- W4283273555 cites W2095165072 @default.
- W4283273555 cites W2167975528 @default.
- W4283273555 cites W2343540477 @default.
- W4283273555 cites W2526879497 @default.
- W4283273555 cites W2557301950 @default.
- W4283273555 cites W2759483166 @default.
- W4283273555 cites W2901051931 @default.
- W4283273555 cites W2905222368 @default.
- W4283273555 cites W2910105265 @default.
- W4283273555 cites W2913095566 @default.
- W4283273555 cites W2917245180 @default.
- W4283273555 cites W2942336547 @default.
- W4283273555 cites W2950454504 @default.
- W4283273555 cites W2982299617 @default.
- W4283273555 cites W3128509898 @default.
- W4283273555 cites W3128802133 @default.
- W4283273555 cites W3131206346 @default.
- W4283273555 cites W3137325653 @default.
- W4283273555 cites W3162529247 @default.
- W4283273555 cites W3176727270 @default.
- W4283273555 cites W3202356044 @default.
- W4283273555 cites W4206228240 @default.
- W4283273555 cites W4214615246 @default.
- W4283273555 cites W4220760907 @default.
- W4283273555 cites W4223919817 @default.
- W4283273555 cites W4224287743 @default.
- W4283273555 cites W4224303284 @default.
- W4283273555 cites W4224944506 @default.
- W4283273555 cites W4293255299 @default.
- W4283273555 doi "https://doi.org/10.3390/app12136297" @default.
- W4283273555 hasPublicationYear "2022" @default.
- W4283273555 type Work @default.
- W4283273555 citedByCount "0" @default.
- W4283273555 crossrefType "journal-article" @default.
- W4283273555 hasAuthorship W4283273555A5023777406 @default.
- W4283273555 hasAuthorship W4283273555A5028927719 @default.
- W4283273555 hasAuthorship W4283273555A5064255960 @default.
- W4283273555 hasAuthorship W4283273555A5079059862 @default.
- W4283273555 hasAuthorship W4283273555A5082509767 @default.
- W4283273555 hasBestOaLocation W42832735551 @default.
- W4283273555 hasConcept C118552586 @default.
- W4283273555 hasConcept C119857082 @default.
- W4283273555 hasConcept C142724271 @default.
- W4283273555 hasConcept C148483581 @default.
- W4283273555 hasConcept C153180895 @default.
- W4283273555 hasConcept C154945302 @default.
- W4283273555 hasConcept C203868755 @default.
- W4283273555 hasConcept C41008148 @default.
- W4283273555 hasConcept C522805319 @default.
- W4283273555 hasConcept C534262118 @default.
- W4283273555 hasConcept C71924100 @default.
- W4283273555 hasConcept C81363708 @default.
- W4283273555 hasConceptScore W4283273555C118552586 @default.
- W4283273555 hasConceptScore W4283273555C119857082 @default.
- W4283273555 hasConceptScore W4283273555C142724271 @default.
- W4283273555 hasConceptScore W4283273555C148483581 @default.
- W4283273555 hasConceptScore W4283273555C153180895 @default.
- W4283273555 hasConceptScore W4283273555C154945302 @default.
- W4283273555 hasConceptScore W4283273555C203868755 @default.
- W4283273555 hasConceptScore W4283273555C41008148 @default.
- W4283273555 hasConceptScore W4283273555C522805319 @default.
- W4283273555 hasConceptScore W4283273555C534262118 @default.
- W4283273555 hasConceptScore W4283273555C71924100 @default.
- W4283273555 hasConceptScore W4283273555C81363708 @default.
- W4283273555 hasIssue "13" @default.
- W4283273555 hasLocation W42832735551 @default.
- W4283273555 hasOpenAccess W4283273555 @default.
- W4283273555 hasPrimaryLocation W42832735551 @default.
- W4283273555 hasRelatedWork W2767651786 @default.
- W4283273555 hasRelatedWork W2912288872 @default.
- W4283273555 hasRelatedWork W2961085424 @default.
- W4283273555 hasRelatedWork W3021430260 @default.
- W4283273555 hasRelatedWork W3027997911 @default.
- W4283273555 hasRelatedWork W3181746755 @default.
- W4283273555 hasRelatedWork W4287776258 @default.
- W4283273555 hasRelatedWork W4306674287 @default.
- W4283273555 hasRelatedWork W4309637067 @default.
- W4283273555 hasRelatedWork W564581980 @default.
- W4283273555 hasVolume "12" @default.
- W4283273555 isParatext "false" @default.
- W4283273555 isRetracted "false" @default.
- W4283273555 workType "article" @default.