Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283273560> ?p ?o ?g. }
- W4283273560 endingPage "3624" @default.
- W4283273560 startingPage "3603" @default.
- W4283273560 abstract "Abstract Humans hyperventilate under heat and cold strain. This hyperventilatory response has detrimental consequences including acid–base dysregulation, dyspnoea, decreased cerebral blood flow and accelerated brain heating. The ventilatory response to hypoxia is exaggerated under whole‐body heating and cooling, indicating that altered carotid body function might contribute to thermally mediated hyperventilation. To address whether the carotid body might contribute to heat‐ and cold‐induced hyperventilation, we indirectly measured carotid body tonic activity via hyperoxia, and carotid body sensitivity via hypoxia, under graded heat and cold strain in 13 healthy participants in a repeated‐measures design. We hypothesised that carotid body tonic activity and sensitivity would be elevated in a dose‐dependent manner under graded heat and cold strain, thereby supporting its role in driving thermally mediated hyperventilation. Carotid body tonic activity was increased in a dose‐dependent manner with heating, reaching 175% above baseline ( P < 0.0005), and carotid body suppression with hyperoxia removed all of the heat‐induced increase in ventilation ( P = 0.9297). Core cooling increased carotid body activity by up to 250% ( P < 0.0001), but maximal values were reached with mild cooling and thereafter plateaued. Carotid body sensitivity to hypoxia was profoundly increased by up to 180% with heat stress ( P = 0.0097), whereas cooling had no detectable effect on hypoxic sensitivity. In summary, cold stress increased carotid body tonic activity and this effect was saturated with mild cooling, whereas heating had clear dose‐dependent effects on carotid body tonic activity and sensitivity. These dose‐dependent effects with heat strain indicate that the carotid body probably plays a primary role in driving heat‐induced hyperventilation. image Key points Humans over‐breathe (hyperventilate) when under heat and cold stress, and though this has detrimental physiological repercussions, the mechanisms underlying this response are unknown. The carotid body, a small organ that is responsible for driving hyperventilation in hypoxia, was assessed under incremental heat and cold strain. The carotid body drive to breathe, as indirectly assessed by transient hyperoxia, increased in a dose‐dependent manner with heating, reaching 175% above baseline; cold stress similarly increased the carotid body drive to breathe, but did not show dose‐dependency. Carotid body sensitivity, as indirectly assessed by hypoxic ventilatory responses, was profoundly increased by 70–180% with mild and severe heat strain, whereas cooling had no detectable effect. Carotid body hyperactivity and hypersensitivity are two interrelated mechanisms that probably underlie the increased drive to breathe with heat strain, whereas carotid body hyperactivity during mild cooling may play a subsidiary role in cold‐induced hyperventilation." @default.
- W4283273560 created "2022-06-23" @default.
- W4283273560 creator A5005641141 @default.
- W4283273560 creator A5011098520 @default.
- W4283273560 creator A5026966406 @default.
- W4283273560 creator A5036641663 @default.
- W4283273560 creator A5038076941 @default.
- W4283273560 creator A5040882150 @default.
- W4283273560 creator A5048891157 @default.
- W4283273560 creator A5065805547 @default.
- W4283273560 date "2022-07-12" @default.
- W4283273560 modified "2023-09-30" @default.
- W4283273560 title "Contribution of the carotid body to thermally mediated hyperventilation in humans" @default.
- W4283273560 cites W1495775441 @default.
- W4283273560 cites W1549485451 @default.
- W4283273560 cites W1555891245 @default.
- W4283273560 cites W1582411417 @default.
- W4283273560 cites W1596457316 @default.
- W4283273560 cites W1852880499 @default.
- W4283273560 cites W1945877668 @default.
- W4283273560 cites W1951724000 @default.
- W4283273560 cites W1962642077 @default.
- W4283273560 cites W1969321582 @default.
- W4283273560 cites W1969589505 @default.
- W4283273560 cites W1983921331 @default.
- W4283273560 cites W1987990823 @default.
- W4283273560 cites W1988828424 @default.
- W4283273560 cites W1998845276 @default.
- W4283273560 cites W2009078172 @default.
- W4283273560 cites W2014027462 @default.
- W4283273560 cites W2019749436 @default.
- W4283273560 cites W2022948456 @default.
- W4283273560 cites W2036305202 @default.
- W4283273560 cites W2039289504 @default.
- W4283273560 cites W2042843395 @default.
- W4283273560 cites W2048623726 @default.
- W4283273560 cites W2055381794 @default.
- W4283273560 cites W2059394014 @default.
- W4283273560 cites W2065925359 @default.
- W4283273560 cites W2070969718 @default.
- W4283273560 cites W2077837756 @default.
- W4283273560 cites W2080149459 @default.
- W4283273560 cites W2082001008 @default.
- W4283273560 cites W2082401685 @default.
- W4283273560 cites W2083698436 @default.
- W4283273560 cites W2097871502 @default.
- W4283273560 cites W2099149108 @default.
- W4283273560 cites W2103511129 @default.
- W4283273560 cites W2104784252 @default.
- W4283273560 cites W2110639493 @default.
- W4283273560 cites W2120934356 @default.
- W4283273560 cites W2122081798 @default.
- W4283273560 cites W2122999778 @default.
- W4283273560 cites W2139993058 @default.
- W4283273560 cites W2145985684 @default.
- W4283273560 cites W2147203866 @default.
- W4283273560 cites W2151543339 @default.
- W4283273560 cites W2155839005 @default.
- W4283273560 cites W2160118933 @default.
- W4283273560 cites W2165937429 @default.
- W4283273560 cites W2172496668 @default.
- W4283273560 cites W2177399017 @default.
- W4283273560 cites W2178916659 @default.
- W4283273560 cites W2233146458 @default.
- W4283273560 cites W2240601031 @default.
- W4283273560 cites W2246029800 @default.
- W4283273560 cites W2278292778 @default.
- W4283273560 cites W2328724723 @default.
- W4283273560 cites W2400538395 @default.
- W4283273560 cites W2401247779 @default.
- W4283273560 cites W2402371133 @default.
- W4283273560 cites W2417520336 @default.
- W4283273560 cites W2601373918 @default.
- W4283273560 cites W2757693698 @default.
- W4283273560 cites W2773210697 @default.
- W4283273560 cites W2797695202 @default.
- W4283273560 cites W2899284503 @default.
- W4283273560 cites W2982287976 @default.
- W4283273560 cites W3048180337 @default.
- W4283273560 cites W3131505594 @default.
- W4283273560 cites W4205497310 @default.
- W4283273560 cites W4321060543 @default.
- W4283273560 doi "https://doi.org/10.1113/jp282918" @default.
- W4283273560 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35731687" @default.
- W4283273560 hasPublicationYear "2022" @default.
- W4283273560 type Work @default.
- W4283273560 citedByCount "5" @default.
- W4283273560 countsByYear W42832735602022 @default.
- W4283273560 countsByYear W42832735602023 @default.
- W4283273560 crossrefType "journal-article" @default.
- W4283273560 hasAuthorship W4283273560A5005641141 @default.
- W4283273560 hasAuthorship W4283273560A5011098520 @default.
- W4283273560 hasAuthorship W4283273560A5026966406 @default.
- W4283273560 hasAuthorship W4283273560A5036641663 @default.
- W4283273560 hasAuthorship W4283273560A5038076941 @default.
- W4283273560 hasAuthorship W4283273560A5040882150 @default.
- W4283273560 hasAuthorship W4283273560A5048891157 @default.
- W4283273560 hasAuthorship W4283273560A5065805547 @default.