Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283274313> ?p ?o ?g. }
- W4283274313 endingPage "4667" @default.
- W4283274313 startingPage "4656" @default.
- W4283274313 abstract "Osteosarcoma is the most common malignant osteosarcoma, and most developing countries face great challenges in the diagnosis due to the lack of medical resources. Magnetic resonance imaging (MRI) has always been an important tool for the detection of osteosarcoma, but it is a time-consuming and labor-intensive task for doctors to manually identify MRI images. It is highly subjective and prone to misdiagnosis. Existing computer-aided diagnosis methods of osteosarcoma MRI images focus only on accuracy, ignoring the lack of computing resources in developing countries. In addition, the large amount of redundant and noisy data generated during imaging should also be considered. To alleviate the inefficiency of osteosarcoma diagnosis faced by developing countries, this paper proposed an artificial intelligence multiprocessing scheme for pre-screening, noise reduction, and segmentation of osteosarcoma MRI images. For pre-screening, we propose the Slide Block Filter to remove useless images. Next, we introduced a fast non-local means algorithm using integral images to denoise noisy images. We then segmented the filtered and denoised MRI images using a U-shaped network (ETUNet) embedded with a transformer layer, which enhances the functionality and robustness of the traditional U-shaped architecture. Finally, we further optimized the segmented tumor boundaries using conditional random fields. This paper conducted experiments on more than 70,000 MRI images of osteosarcoma from three hospitals in China. The experimental results show that our proposed methods have good results and better performance in pre-screening, noise reduction, and segmentation." @default.
- W4283274313 created "2022-06-23" @default.
- W4283274313 creator A5018775731 @default.
- W4283274313 creator A5024723808 @default.
- W4283274313 creator A5025446379 @default.
- W4283274313 creator A5027630663 @default.
- W4283274313 creator A5050865233 @default.
- W4283274313 creator A5065873184 @default.
- W4283274313 date "2022-09-01" @default.
- W4283274313 modified "2023-10-17" @default.
- W4283274313 title "An Artificial Intelligence Multiprocessing Scheme for the Diagnosis of Osteosarcoma MRI Images" @default.
- W4283274313 cites W1903029394 @default.
- W4283274313 cites W2012231760 @default.
- W4283274313 cites W2025242006 @default.
- W4283274313 cites W2046969815 @default.
- W4283274313 cites W2056370875 @default.
- W4283274313 cites W2097073572 @default.
- W4283274313 cites W2105786560 @default.
- W4283274313 cites W2142113560 @default.
- W4283274313 cites W2151103935 @default.
- W4283274313 cites W2164598857 @default.
- W4283274313 cites W2560023338 @default.
- W4283274313 cites W2565639579 @default.
- W4283274313 cites W2574952845 @default.
- W4283274313 cites W2591213449 @default.
- W4283274313 cites W2783895116 @default.
- W4283274313 cites W2793073355 @default.
- W4283274313 cites W2801353374 @default.
- W4283274313 cites W2888358068 @default.
- W4283274313 cites W2890847992 @default.
- W4283274313 cites W2895691161 @default.
- W4283274313 cites W2902857081 @default.
- W4283274313 cites W2941032002 @default.
- W4283274313 cites W2963725279 @default.
- W4283274313 cites W2989650556 @default.
- W4283274313 cites W2999309192 @default.
- W4283274313 cites W3024881533 @default.
- W4283274313 cites W3087050846 @default.
- W4283274313 cites W3088313463 @default.
- W4283274313 cites W3090306116 @default.
- W4283274313 cites W3092344722 @default.
- W4283274313 cites W3094268709 @default.
- W4283274313 cites W3113478493 @default.
- W4283274313 cites W3127076201 @default.
- W4283274313 cites W3155074715 @default.
- W4283274313 cites W3169107478 @default.
- W4283274313 cites W3191998012 @default.
- W4283274313 cites W3195315042 @default.
- W4283274313 cites W3198789395 @default.
- W4283274313 cites W3203129667 @default.
- W4283274313 cites W3203480968 @default.
- W4283274313 cites W3204166336 @default.
- W4283274313 cites W3205247817 @default.
- W4283274313 cites W3208216270 @default.
- W4283274313 cites W3216730860 @default.
- W4283274313 cites W4206255522 @default.
- W4283274313 doi "https://doi.org/10.1109/jbhi.2022.3184930" @default.
- W4283274313 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35727772" @default.
- W4283274313 hasPublicationYear "2022" @default.
- W4283274313 type Work @default.
- W4283274313 citedByCount "23" @default.
- W4283274313 countsByYear W42832743132022 @default.
- W4283274313 countsByYear W42832743132023 @default.
- W4283274313 crossrefType "journal-article" @default.
- W4283274313 hasAuthorship W4283274313A5018775731 @default.
- W4283274313 hasAuthorship W4283274313A5024723808 @default.
- W4283274313 hasAuthorship W4283274313A5025446379 @default.
- W4283274313 hasAuthorship W4283274313A5027630663 @default.
- W4283274313 hasAuthorship W4283274313A5050865233 @default.
- W4283274313 hasAuthorship W4283274313A5065873184 @default.
- W4283274313 hasConcept C104317684 @default.
- W4283274313 hasConcept C119857082 @default.
- W4283274313 hasConcept C124504099 @default.
- W4283274313 hasConcept C126838900 @default.
- W4283274313 hasConcept C142724271 @default.
- W4283274313 hasConcept C143409427 @default.
- W4283274313 hasConcept C153180895 @default.
- W4283274313 hasConcept C154945302 @default.
- W4283274313 hasConcept C185592680 @default.
- W4283274313 hasConcept C2777760704 @default.
- W4283274313 hasConcept C31601959 @default.
- W4283274313 hasConcept C31972630 @default.
- W4283274313 hasConcept C41008148 @default.
- W4283274313 hasConcept C55493867 @default.
- W4283274313 hasConcept C63479239 @default.
- W4283274313 hasConcept C71924100 @default.
- W4283274313 hasConcept C89600930 @default.
- W4283274313 hasConceptScore W4283274313C104317684 @default.
- W4283274313 hasConceptScore W4283274313C119857082 @default.
- W4283274313 hasConceptScore W4283274313C124504099 @default.
- W4283274313 hasConceptScore W4283274313C126838900 @default.
- W4283274313 hasConceptScore W4283274313C142724271 @default.
- W4283274313 hasConceptScore W4283274313C143409427 @default.
- W4283274313 hasConceptScore W4283274313C153180895 @default.
- W4283274313 hasConceptScore W4283274313C154945302 @default.
- W4283274313 hasConceptScore W4283274313C185592680 @default.
- W4283274313 hasConceptScore W4283274313C2777760704 @default.
- W4283274313 hasConceptScore W4283274313C31601959 @default.