Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283274487> ?p ?o ?g. }
- W4283274487 endingPage "114566" @default.
- W4283274487 startingPage "114566" @default.
- W4283274487 abstract "Seismic responses of tall pier bridges are usually estimated with nonlinear time history analysis (NLTHA) since it is able to provide rigorous results while the time consumption is acceptable with the improvement of computers. Note that parallel computing employing multiple computers might be required to facilitate estimating the performance of numerous bridges in highway networks after earthquakes. Recently, deep learning techniques have been recognized as promising alternatives for predicting structural responses in earthquake engineering with significantly improved time efficiency. Therefore, this paper develops a fast seismic performance estimation methodology using deep learning procedures to rapidly predict the seismic demands of tall pier bridges. The efficiency of the employed techniques is verified through illustrative examples, by comparing the predicted responses with those obtained from NLTHA under several types of input motions. The results show that when trained following appropriate steps, the deep learning models could provide satisfactory prediction for shear force, bending moment, as well as section curvature ductility. Additionally, the time efficiency of deep learning models is shown increased by about 97% compared with NLTHA, which might be further improved for more complex structural systems. Further parametric analysis reveals that the efficiency of selecting proper input variables for deep learning models could be significantly improved by considering the physical characteristics of structures; e.g., structural dynamic properties and interaction between structure and ground motion. This methodology is believed especially favored evaluating the seismic performance/post-earthquake resilience of highway networks containing thousands of bridges, in which conducting NLTHA for each bridge is prohibitively computational demanding and might delay rescue operations." @default.
- W4283274487 created "2022-06-23" @default.
- W4283274487 creator A5005926916 @default.
- W4283274487 creator A5046884970 @default.
- W4283274487 creator A5069190300 @default.
- W4283274487 date "2022-09-01" @default.
- W4283274487 modified "2023-10-18" @default.
- W4283274487 title "Fast seismic response estimation of tall pier bridges based on deep learning techniques" @default.
- W4283274487 cites W1964028817 @default.
- W4283274487 cites W1965874043 @default.
- W4283274487 cites W2028070629 @default.
- W4283274487 cites W2037550469 @default.
- W4283274487 cites W2064675550 @default.
- W4283274487 cites W2077158859 @default.
- W4283274487 cites W2082179468 @default.
- W4283274487 cites W2088788700 @default.
- W4283274487 cites W2098480896 @default.
- W4283274487 cites W2130213987 @default.
- W4283274487 cites W2136848157 @default.
- W4283274487 cites W2176860362 @default.
- W4283274487 cites W2314699664 @default.
- W4283274487 cites W2570143453 @default.
- W4283274487 cites W2610872110 @default.
- W4283274487 cites W2736461267 @default.
- W4283274487 cites W2789384841 @default.
- W4283274487 cites W2809591191 @default.
- W4283274487 cites W2885850695 @default.
- W4283274487 cites W2889226858 @default.
- W4283274487 cites W2946752227 @default.
- W4283274487 cites W2963587403 @default.
- W4283274487 cites W2964604872 @default.
- W4283274487 cites W2981416566 @default.
- W4283274487 cites W2985072278 @default.
- W4283274487 cites W2990244813 @default.
- W4283274487 cites W2997082648 @default.
- W4283274487 cites W3000956531 @default.
- W4283274487 cites W3011363688 @default.
- W4283274487 cites W3038019205 @default.
- W4283274487 cites W3047439487 @default.
- W4283274487 cites W3096488325 @default.
- W4283274487 cites W3134176174 @default.
- W4283274487 cites W3214140326 @default.
- W4283274487 cites W3214963161 @default.
- W4283274487 cites W3217240125 @default.
- W4283274487 cites W3217411690 @default.
- W4283274487 cites W4200326980 @default.
- W4283274487 cites W4200376558 @default.
- W4283274487 cites W4206787856 @default.
- W4283274487 cites W4214861077 @default.
- W4283274487 cites W4224991090 @default.
- W4283274487 cites W4247680473 @default.
- W4283274487 doi "https://doi.org/10.1016/j.engstruct.2022.114566" @default.
- W4283274487 hasPublicationYear "2022" @default.
- W4283274487 type Work @default.
- W4283274487 citedByCount "4" @default.
- W4283274487 countsByYear W42832744872023 @default.
- W4283274487 crossrefType "journal-article" @default.
- W4283274487 hasAuthorship W4283274487A5005926916 @default.
- W4283274487 hasAuthorship W4283274487A5046884970 @default.
- W4283274487 hasAuthorship W4283274487A5069190300 @default.
- W4283274487 hasConcept C105795698 @default.
- W4283274487 hasConcept C108583219 @default.
- W4283274487 hasConcept C117251300 @default.
- W4283274487 hasConcept C121332964 @default.
- W4283274487 hasConcept C127413603 @default.
- W4283274487 hasConcept C154945302 @default.
- W4283274487 hasConcept C157892014 @default.
- W4283274487 hasConcept C179254644 @default.
- W4283274487 hasConcept C195065555 @default.
- W4283274487 hasConcept C2524010 @default.
- W4283274487 hasConcept C33923547 @default.
- W4283274487 hasConcept C41008148 @default.
- W4283274487 hasConcept C66938386 @default.
- W4283274487 hasConcept C70673446 @default.
- W4283274487 hasConcept C74650414 @default.
- W4283274487 hasConceptScore W4283274487C105795698 @default.
- W4283274487 hasConceptScore W4283274487C108583219 @default.
- W4283274487 hasConceptScore W4283274487C117251300 @default.
- W4283274487 hasConceptScore W4283274487C121332964 @default.
- W4283274487 hasConceptScore W4283274487C127413603 @default.
- W4283274487 hasConceptScore W4283274487C154945302 @default.
- W4283274487 hasConceptScore W4283274487C157892014 @default.
- W4283274487 hasConceptScore W4283274487C179254644 @default.
- W4283274487 hasConceptScore W4283274487C195065555 @default.
- W4283274487 hasConceptScore W4283274487C2524010 @default.
- W4283274487 hasConceptScore W4283274487C33923547 @default.
- W4283274487 hasConceptScore W4283274487C41008148 @default.
- W4283274487 hasConceptScore W4283274487C66938386 @default.
- W4283274487 hasConceptScore W4283274487C70673446 @default.
- W4283274487 hasConceptScore W4283274487C74650414 @default.
- W4283274487 hasFunder F4320321001 @default.
- W4283274487 hasFunder F4320334764 @default.
- W4283274487 hasLocation W42832744871 @default.
- W4283274487 hasOpenAccess W4283274487 @default.
- W4283274487 hasPrimaryLocation W42832744871 @default.
- W4283274487 hasRelatedWork W2012599878 @default.
- W4283274487 hasRelatedWork W2351529547 @default.
- W4283274487 hasRelatedWork W2370125054 @default.