Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283276009> ?p ?o ?g. }
- W4283276009 endingPage "e2217854" @default.
- W4283276009 startingPage "e2217854" @default.
- W4283276009 abstract "<h3>Importance</h3> Accurate screening of trisomy 21 in the first trimester can provide an early opportunity for decision-making regarding reproductive choices. <h3>Objective</h3> To develop and validate a deep learning model for screening fetuses with trisomy 21 based on ultrasonographic images. <h3>Design, Setting, and Participants</h3> This diagnostic study used data from all available cases and controls enrolled at 2 hospitals in China between January 2009 and September 2020. Two-dimensional images of the midsagittal plane of the fetal face in singleton pregnancies with gestational age more than 11 weeks and less than 14 weeks were examined. Observers were blinded to subjective fetus nuchal translucency (NT) marker measurements. A convolutional neural network was developed to construct a deep learning model. Data augmentation was applied to generate more data. Different groups were randomly selected as training and validation sets to assess the robustness of the deep learning model. The fetal NT was shown and measured. Each detection of trisomy 21 was confirmed by chorionic villus sampling or amniocentesis. Data were analyzed from March 1, 2021, to January 3, 2022. <h3>Main Outcomes and Measures</h3> The primary outcome was detection of fetuses with trisomy 21. The receiver operating characteristic curve, metrics of accuracy, area under the curve (AUC), sensitivity, and specificity were used for model performance evaluation. <h3>Results</h3> A total of 822 case and control participants (mean [SD] age, 31.9 [4.6] years) were enrolled in the study, including 550 participants (mean [SD] age, 31.7 [4.7] years) in the training set and 272 participants (mean [SD] age, 32.3 [4.7] years) in the validation set. The deep learning model showed good performance for trisomy 21 screening in the training (AUC, 0.98; 95% CI, 0.97-0.99) and validation (AUC, 0.95; 95% CI, 0.93-0.98) sets. The deep learning model had better detective performance for fetuses with trisomy 21 than the model with NT marker and maternal age (training: AUC, 0.82; 95% CI, 0.77-0.86; validation: AUC, 0.73; 95% CI, 0.66-0.80). <h3>Conclusions and Relevance</h3> These findings suggest that this deep learning model accurately screened fetuses with trisomy 21, which indicates that the model is a potential tool to facilitate universal primary screening for trisomy 21." @default.
- W4283276009 created "2022-06-23" @default.
- W4283276009 creator A5001430609 @default.
- W4283276009 creator A5006074187 @default.
- W4283276009 creator A5023307885 @default.
- W4283276009 creator A5041790970 @default.
- W4283276009 creator A5057816423 @default.
- W4283276009 creator A5063903848 @default.
- W4283276009 creator A5089402019 @default.
- W4283276009 date "2022-06-21" @default.
- W4283276009 modified "2023-10-14" @default.
- W4283276009 title "Development and Validation of a Deep Learning Model to Screen for Trisomy 21 During the First Trimester From Nuchal Ultrasonographic Images" @default.
- W4283276009 cites W1221682153 @default.
- W4283276009 cites W1642960112 @default.
- W4283276009 cites W1669015591 @default.
- W4283276009 cites W2006617902 @default.
- W4283276009 cites W2007102086 @default.
- W4283276009 cites W2075791178 @default.
- W4283276009 cites W2126460983 @default.
- W4283276009 cites W2139926668 @default.
- W4283276009 cites W2239118478 @default.
- W4283276009 cites W2311892072 @default.
- W4283276009 cites W2565639579 @default.
- W4283276009 cites W2732063980 @default.
- W4283276009 cites W2792252898 @default.
- W4283276009 cites W2801458876 @default.
- W4283276009 cites W2810868655 @default.
- W4283276009 cites W2910380368 @default.
- W4283276009 cites W2911605224 @default.
- W4283276009 cites W2913160101 @default.
- W4283276009 cites W2929215516 @default.
- W4283276009 cites W2963857746 @default.
- W4283276009 cites W3004902522 @default.
- W4283276009 cites W3026045576 @default.
- W4283276009 cites W3027764902 @default.
- W4283276009 cites W3034449184 @default.
- W4283276009 cites W3039762369 @default.
- W4283276009 cites W3044645766 @default.
- W4283276009 cites W3119742431 @default.
- W4283276009 cites W3167817182 @default.
- W4283276009 cites W4235456639 @default.
- W4283276009 cites W4239261847 @default.
- W4283276009 cites W4246893678 @default.
- W4283276009 cites W4362597612 @default.
- W4283276009 doi "https://doi.org/10.1001/jamanetworkopen.2022.17854" @default.
- W4283276009 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35727579" @default.
- W4283276009 hasPublicationYear "2022" @default.
- W4283276009 type Work @default.
- W4283276009 citedByCount "3" @default.
- W4283276009 countsByYear W42832760092022 @default.
- W4283276009 countsByYear W42832760092023 @default.
- W4283276009 crossrefType "journal-article" @default.
- W4283276009 hasAuthorship W4283276009A5001430609 @default.
- W4283276009 hasAuthorship W4283276009A5006074187 @default.
- W4283276009 hasAuthorship W4283276009A5023307885 @default.
- W4283276009 hasAuthorship W4283276009A5041790970 @default.
- W4283276009 hasAuthorship W4283276009A5057816423 @default.
- W4283276009 hasAuthorship W4283276009A5063903848 @default.
- W4283276009 hasAuthorship W4283276009A5089402019 @default.
- W4283276009 hasBestOaLocation W42832760091 @default.
- W4283276009 hasConcept C126322002 @default.
- W4283276009 hasConcept C131872663 @default.
- W4283276009 hasConcept C154945302 @default.
- W4283276009 hasConcept C172680121 @default.
- W4283276009 hasConcept C2776229224 @default.
- W4283276009 hasConcept C2777966818 @default.
- W4283276009 hasConcept C2778258057 @default.
- W4283276009 hasConcept C2778376644 @default.
- W4283276009 hasConcept C2779234561 @default.
- W4283276009 hasConcept C29456083 @default.
- W4283276009 hasConcept C41008148 @default.
- W4283276009 hasConcept C54355233 @default.
- W4283276009 hasConcept C58471807 @default.
- W4283276009 hasConcept C71924100 @default.
- W4283276009 hasConcept C86803240 @default.
- W4283276009 hasConceptScore W4283276009C126322002 @default.
- W4283276009 hasConceptScore W4283276009C131872663 @default.
- W4283276009 hasConceptScore W4283276009C154945302 @default.
- W4283276009 hasConceptScore W4283276009C172680121 @default.
- W4283276009 hasConceptScore W4283276009C2776229224 @default.
- W4283276009 hasConceptScore W4283276009C2777966818 @default.
- W4283276009 hasConceptScore W4283276009C2778258057 @default.
- W4283276009 hasConceptScore W4283276009C2778376644 @default.
- W4283276009 hasConceptScore W4283276009C2779234561 @default.
- W4283276009 hasConceptScore W4283276009C29456083 @default.
- W4283276009 hasConceptScore W4283276009C41008148 @default.
- W4283276009 hasConceptScore W4283276009C54355233 @default.
- W4283276009 hasConceptScore W4283276009C58471807 @default.
- W4283276009 hasConceptScore W4283276009C71924100 @default.
- W4283276009 hasConceptScore W4283276009C86803240 @default.
- W4283276009 hasIssue "6" @default.
- W4283276009 hasLocation W42832760091 @default.
- W4283276009 hasLocation W42832760092 @default.
- W4283276009 hasLocation W42832760093 @default.
- W4283276009 hasOpenAccess W4283276009 @default.
- W4283276009 hasPrimaryLocation W42832760091 @default.
- W4283276009 hasRelatedWork W1985000757 @default.
- W4283276009 hasRelatedWork W1994114965 @default.