Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283276574> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4283276574 abstract "Purpose With the advent of AI-federated technologies, it is feasible to perform complex tasks in industrial Internet of Things (IIoT) environment by enhancing throughput of the network and by reducing the latency of transmitted data. The communications in IIoT and Industry 4.0 requires handshaking of multiple technologies for supporting heterogeneous networks and diverse protocols. IIoT applications may gather and analyse sensor data, allowing operators to monitor and manage production systems, resulting in considerable performance gains in automated processes. All IIoT applications are responsible for generating a vast set of data based on diverse characteristics. To obtain an optimum throughput in an IIoT environment requires efficiently processing of IIoT applications over communication channels. Because computing resources in the IIoT are limited, equitable resource allocation with the least amount of delay is the need of the IIoT applications. Although some existing scheduling strategies address delay concerns, faster transmission of data and optimal throughput should also be addressed along with the handling of transmission delay. Hence, this study aims to focus on a fair mechanism to handle throughput, transmission delay and faster transmission of data. The proposed work provides a link-scheduling algorithm termed as delay-aware resource allocation that allocates computing resources to computational-sensitive tasks by reducing overall latency and by increasing the overall throughput of the network. First of all, a multi-hop delay model is developed with multistep delay prediction using AI-federated neural network long–short-term memory (LSTM), which serves as a foundation for future design. Then, link-scheduling algorithm is designed for data routing in an efficient manner. The extensive experimental results reveal that the average end-to-end delay by considering processing, propagation, queueing and transmission delays is minimized with the proposed strategy. Experiments show that advances in machine learning have led to developing a smart, collaborative link scheduling algorithm for fairness-driven resource allocation with minimal delay and optimal throughput. The prediction performance of AI-federated LSTM is compared with the existing approaches and it outperforms over other techniques by achieving 98.2% accuracy. Design/methodology/approach With an increase of IoT devices, the demand for more IoT gateways has increased, which increases the cost of network infrastructure. As a result, the proposed system uses low-cost intermediate gateways in this study. Each gateway may use a different communication technology for data transmission within an IoT network. As a result, gateways are heterogeneous, with hardware support limited to the technologies associated with the wireless sensor networks. Data communication fairness at each gateway is achieved in an IoT network by considering dynamic IoT traffic and link-scheduling problems to achieve effective resource allocation in an IoT network. The two-phased solution is provided to solve these problems for improved data communication in heterogeneous networks achieving fairness. In the first phase, traffic is predicted using the LSTM network model to predict the dynamic traffic. In the second phase, efficient link selection per technology and link scheduling are achieved based on predicted load, the distance between gateways, link capacity and time required as per different technologies supported such as Bluetooth, Wi-Fi and Zigbee. It enhances data transmission fairness for all gateways, resulting in more data transmission achieving maximum throughput. Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation. Findings Our proposed approach outperforms by achieving maximum network throughput, and less packet delay is demonstrated using simulation. It also shows that AI- and IoT-federated devices can communicate seamlessly over IoT networks in Industry 4.0. Originality/value The concept is a part of the original research work and can be adopted by Industry 4.0 for easy and seamless connectivity of AI and IoT-federated devices." @default.
- W4283276574 created "2022-06-23" @default.
- W4283276574 creator A5059286327 @default.
- W4283276574 creator A5066915193 @default.
- W4283276574 date "2022-06-22" @default.
- W4283276574 modified "2023-10-15" @default.
- W4283276574 title "AI-federated novel delay-aware link-scheduling for Industry 4.0 applications in IoT networks" @default.
- W4283276574 cites W2470742835 @default.
- W4283276574 cites W2516360286 @default.
- W4283276574 cites W2790675759 @default.
- W4283276574 cites W2793644300 @default.
- W4283276574 cites W2795250232 @default.
- W4283276574 cites W2797431058 @default.
- W4283276574 cites W2811256013 @default.
- W4283276574 cites W2889230014 @default.
- W4283276574 cites W2890853564 @default.
- W4283276574 cites W2894434266 @default.
- W4283276574 cites W2902264868 @default.
- W4283276574 cites W2903288796 @default.
- W4283276574 cites W2909823930 @default.
- W4283276574 cites W2915853293 @default.
- W4283276574 cites W2920868908 @default.
- W4283276574 cites W2966069238 @default.
- W4283276574 cites W2998696623 @default.
- W4283276574 cites W3005810528 @default.
- W4283276574 cites W3013103056 @default.
- W4283276574 cites W3025110576 @default.
- W4283276574 cites W3134914025 @default.
- W4283276574 cites W3152685747 @default.
- W4283276574 cites W4212832488 @default.
- W4283276574 cites W4225279003 @default.
- W4283276574 cites W4226181111 @default.
- W4283276574 cites W2296689460 @default.
- W4283276574 doi "https://doi.org/10.1108/ijpcc-12-2021-0297" @default.
- W4283276574 hasPublicationYear "2022" @default.
- W4283276574 type Work @default.
- W4283276574 citedByCount "1" @default.
- W4283276574 countsByYear W42832765742023 @default.
- W4283276574 crossrefType "journal-article" @default.
- W4283276574 hasAuthorship W4283276574A5059286327 @default.
- W4283276574 hasAuthorship W4283276574A5066915193 @default.
- W4283276574 hasConcept C120314980 @default.
- W4283276574 hasConcept C157764524 @default.
- W4283276574 hasConcept C162324750 @default.
- W4283276574 hasConcept C206729178 @default.
- W4283276574 hasConcept C21547014 @default.
- W4283276574 hasConcept C31258907 @default.
- W4283276574 hasConcept C41008148 @default.
- W4283276574 hasConcept C555944384 @default.
- W4283276574 hasConcept C557945733 @default.
- W4283276574 hasConcept C76155785 @default.
- W4283276574 hasConcept C82876162 @default.
- W4283276574 hasConceptScore W4283276574C120314980 @default.
- W4283276574 hasConceptScore W4283276574C157764524 @default.
- W4283276574 hasConceptScore W4283276574C162324750 @default.
- W4283276574 hasConceptScore W4283276574C206729178 @default.
- W4283276574 hasConceptScore W4283276574C21547014 @default.
- W4283276574 hasConceptScore W4283276574C31258907 @default.
- W4283276574 hasConceptScore W4283276574C41008148 @default.
- W4283276574 hasConceptScore W4283276574C555944384 @default.
- W4283276574 hasConceptScore W4283276574C557945733 @default.
- W4283276574 hasConceptScore W4283276574C76155785 @default.
- W4283276574 hasConceptScore W4283276574C82876162 @default.
- W4283276574 hasLocation W42832765741 @default.
- W4283276574 hasOpenAccess W4283276574 @default.
- W4283276574 hasPrimaryLocation W42832765741 @default.
- W4283276574 hasRelatedWork W2111238207 @default.
- W4283276574 hasRelatedWork W2112044895 @default.
- W4283276574 hasRelatedWork W2136583354 @default.
- W4283276574 hasRelatedWork W2288610023 @default.
- W4283276574 hasRelatedWork W2393232088 @default.
- W4283276574 hasRelatedWork W2479866044 @default.
- W4283276574 hasRelatedWork W2760721665 @default.
- W4283276574 hasRelatedWork W3121416282 @default.
- W4283276574 hasRelatedWork W330130819 @default.
- W4283276574 hasRelatedWork W4282972749 @default.
- W4283276574 isParatext "false" @default.
- W4283276574 isRetracted "false" @default.
- W4283276574 workType "article" @default.