Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283277642> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W4283277642 abstract "Although the Global Navigation Satellite System (GNSS) technology provides an excellent benefit in different critical areas such as civilian, aviation, military, and commercial applications, it is highly vulnerable to various signal disruptions causing significant positioning errors. One of the major threats to a GNSS receiver is the intentional interference known as jamming. A Jammer significantly disrupts the normal functioning of a GNSS receiver, at the acquisition, tracking, and positioning stages. The foremost important step to combat against jamming of GNSS signals is the early detection and characterization of the interfering signals to guarantee the Quality of Service (QoS). This paper presents a robust Deep-Learning (DL) based technique using transfer learning to characterize the type of disruption in GNSS signal based on time-frequency analysis. To this end, a pre-trained Convolutional Neural Network (CNN) is used to extract the informative features from the scalogram of the received signals. Further, a fully connected layer followed by a Soft-Max activation function is deployed to classify the signals. In this work, the Signal of Interest (SoI) is a synthetic GPS signal generated by a GNSS simulator. In our experiment, the GPS signal is combined with different kinds of jamming, spoofing, and multipath signals. Moreover, the proposed classification approach can recognize not only the various kinds of jammers such as ones producing Continuous Wave Interference (CWI), Multi-CWI (MCWI), Chirp Interference (CI), and Pulse interference (PI) but also the inclusion of Additive White Gaussian Noise (AWGN). Besides that, the effect of five pre-trained CNNs, namely, AlexNet, GoogleNet, ResNet-18, VGG-16, and MobileNet-V2, is evaluated on classification accuracy. The GNSS signal and its seven disruptive variants are recorded at three different power levels such as low, medium, and high. The medium power level signal is used for training and the testing has been carried out for unseen data set of low, high, and mixed power level. From the simulation results, it has been observed that MobileNet-V2 has performed better than other techniques with an accuracy of 99. 8%. Finally, the trained MobileNet-V2 is used to predict the unseen data type generated at different Jamming to signal Ratios (JSRs)." @default.
- W4283277642 created "2022-06-23" @default.
- W4283277642 creator A5016048153 @default.
- W4283277642 creator A5021445018 @default.
- W4283277642 creator A5053974249 @default.
- W4283277642 date "2022-06-07" @default.
- W4283277642 modified "2023-09-26" @default.
- W4283277642 title "Disruptive GNSS Signal detection and classification at different Power levels Using Advanced Deep-Learning Approach" @default.
- W4283277642 cites W1984999561 @default.
- W4283277642 cites W2097117768 @default.
- W4283277642 cites W2135607475 @default.
- W4283277642 cites W2166385084 @default.
- W4283277642 cites W2194775991 @default.
- W4283277642 cites W2395579298 @default.
- W4283277642 cites W2600969726 @default.
- W4283277642 cites W2789875978 @default.
- W4283277642 cites W2809713012 @default.
- W4283277642 cites W2901684226 @default.
- W4283277642 cites W2912226448 @default.
- W4283277642 cites W2946543151 @default.
- W4283277642 cites W2963163009 @default.
- W4283277642 cites W2979779535 @default.
- W4283277642 cites W2984928703 @default.
- W4283277642 cites W3000293687 @default.
- W4283277642 cites W3005909253 @default.
- W4283277642 cites W3027590803 @default.
- W4283277642 cites W3189423944 @default.
- W4283277642 doi "https://doi.org/10.1109/icl-gnss54081.2022.9797026" @default.
- W4283277642 hasPublicationYear "2022" @default.
- W4283277642 type Work @default.
- W4283277642 citedByCount "1" @default.
- W4283277642 countsByYear W42832776422022 @default.
- W4283277642 crossrefType "proceedings-article" @default.
- W4283277642 hasAuthorship W4283277642A5016048153 @default.
- W4283277642 hasAuthorship W4283277642A5021445018 @default.
- W4283277642 hasAuthorship W4283277642A5053974249 @default.
- W4283277642 hasBestOaLocation W42832776422 @default.
- W4283277642 hasConcept C108583219 @default.
- W4283277642 hasConcept C121332964 @default.
- W4283277642 hasConcept C127162648 @default.
- W4283277642 hasConcept C12957241 @default.
- W4283277642 hasConcept C14279187 @default.
- W4283277642 hasConcept C154945302 @default.
- W4283277642 hasConcept C161218011 @default.
- W4283277642 hasConcept C167900197 @default.
- W4283277642 hasConcept C198613851 @default.
- W4283277642 hasConcept C2779079576 @default.
- W4283277642 hasConcept C32022120 @default.
- W4283277642 hasConcept C38652104 @default.
- W4283277642 hasConcept C41008148 @default.
- W4283277642 hasConcept C60229501 @default.
- W4283277642 hasConcept C76155785 @default.
- W4283277642 hasConcept C79403827 @default.
- W4283277642 hasConcept C97355855 @default.
- W4283277642 hasConceptScore W4283277642C108583219 @default.
- W4283277642 hasConceptScore W4283277642C121332964 @default.
- W4283277642 hasConceptScore W4283277642C127162648 @default.
- W4283277642 hasConceptScore W4283277642C12957241 @default.
- W4283277642 hasConceptScore W4283277642C14279187 @default.
- W4283277642 hasConceptScore W4283277642C154945302 @default.
- W4283277642 hasConceptScore W4283277642C161218011 @default.
- W4283277642 hasConceptScore W4283277642C167900197 @default.
- W4283277642 hasConceptScore W4283277642C198613851 @default.
- W4283277642 hasConceptScore W4283277642C2779079576 @default.
- W4283277642 hasConceptScore W4283277642C32022120 @default.
- W4283277642 hasConceptScore W4283277642C38652104 @default.
- W4283277642 hasConceptScore W4283277642C41008148 @default.
- W4283277642 hasConceptScore W4283277642C60229501 @default.
- W4283277642 hasConceptScore W4283277642C76155785 @default.
- W4283277642 hasConceptScore W4283277642C79403827 @default.
- W4283277642 hasConceptScore W4283277642C97355855 @default.
- W4283277642 hasFunder F4320310086 @default.
- W4283277642 hasFunder F4320321108 @default.
- W4283277642 hasLocation W42832776421 @default.
- W4283277642 hasLocation W42832776422 @default.
- W4283277642 hasOpenAccess W4283277642 @default.
- W4283277642 hasPrimaryLocation W42832776421 @default.
- W4283277642 hasRelatedWork W1990918429 @default.
- W4283277642 hasRelatedWork W2023809687 @default.
- W4283277642 hasRelatedWork W2105044760 @default.
- W4283277642 hasRelatedWork W2286524132 @default.
- W4283277642 hasRelatedWork W2588821290 @default.
- W4283277642 hasRelatedWork W2598630260 @default.
- W4283277642 hasRelatedWork W3100615231 @default.
- W4283277642 hasRelatedWork W3119463055 @default.
- W4283277642 hasRelatedWork W3157053299 @default.
- W4283277642 hasRelatedWork W4225524949 @default.
- W4283277642 isParatext "false" @default.
- W4283277642 isRetracted "false" @default.
- W4283277642 workType "article" @default.