Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283278045> ?p ?o ?g. }
- W4283278045 endingPage "10" @default.
- W4283278045 startingPage "1" @default.
- W4283278045 abstract "The completion design of multistage hydraulic fractured wells including the cluster spacing injected proppant and slurry volumes has shown a great influence on the well production rates and estimated ultimate recovery (EUR). EUR estimation is a critical process to evaluate the well profitability. This study proposes the use of different machine learning techniques to predict the EUR as a function of the completion design including the lateral length, the number of stages, the total injected proppant and slurry volumes, and the maximum treating pressure measured during the fracturing operations. A data set of 200 well production data and completion designs was collected from oil production wells in the Niobrara shale formation. Artificial neural network (ANN) and random forest (RF) techniques were implemented to predict EUR from the completion design. The results showed a low accuracy of direct prediction of the EUR from the completion design. Hence, an intermediate step of estimating the initial well production rate (Qi ) from the completion data was carried out, and then, the Qi and the completion design were used as input parameters to predict the EUR. The ANN and RF models accurately predicted the EUR from the completion design data and the estimated Qi . The correlation coefficient (R) values between actual EUR and predicted EUR from the ANN model were 0.96 and 0.95 compared with 0.99 and 0.95 from the RF model for training and testing, respectively. A new correlation was developed based on the weight and biases from the optimized ANN model with an R value of 0.95. This study provides ML application with an empirical correlation to predict the EUR from the completion design parameters at an early time without the need for complex numerical simulation analysis. The developed models require only the initial flow rate along with the completion design to predict EUR with high certainty without the need for several months of production similar to the DCA models." @default.
- W4283278045 created "2022-06-23" @default.
- W4283278045 creator A5023804988 @default.
- W4283278045 creator A5046818830 @default.
- W4283278045 creator A5048634311 @default.
- W4283278045 date "2022-06-21" @default.
- W4283278045 modified "2023-09-26" @default.
- W4283278045 title "Application of Machine Learning to Predict Estimated Ultimate Recovery for Multistage Hydraulically Fractured Wells in Niobrara Shale Formation" @default.
- W4283278045 cites W1967020291 @default.
- W4283278045 cites W1970037416 @default.
- W4283278045 cites W1986433037 @default.
- W4283278045 cites W2008949657 @default.
- W4283278045 cites W2015624944 @default.
- W4283278045 cites W2032418871 @default.
- W4283278045 cites W2038590555 @default.
- W4283278045 cites W2039167611 @default.
- W4283278045 cites W2039699475 @default.
- W4283278045 cites W2042695283 @default.
- W4283278045 cites W2048636621 @default.
- W4283278045 cites W2077574365 @default.
- W4283278045 cites W2093012680 @default.
- W4283278045 cites W2094626212 @default.
- W4283278045 cites W2136922672 @default.
- W4283278045 cites W2153284305 @default.
- W4283278045 cites W2281899018 @default.
- W4283278045 cites W2597135702 @default.
- W4283278045 cites W2781705711 @default.
- W4283278045 cites W2787249892 @default.
- W4283278045 cites W2809007259 @default.
- W4283278045 cites W2905238286 @default.
- W4283278045 cites W2913844895 @default.
- W4283278045 cites W2914520152 @default.
- W4283278045 cites W3034657559 @default.
- W4283278045 cites W3122544572 @default.
- W4283278045 cites W3135068449 @default.
- W4283278045 cites W3195387025 @default.
- W4283278045 cites W3196792362 @default.
- W4283278045 cites W4200271206 @default.
- W4283278045 cites W4205750342 @default.
- W4283278045 cites W4220753710 @default.
- W4283278045 cites W4232251000 @default.
- W4283278045 cites W4237094557 @default.
- W4283278045 cites W4376595535 @default.
- W4283278045 cites W800658455 @default.
- W4283278045 doi "https://doi.org/10.1155/2022/7084514" @default.
- W4283278045 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35774436" @default.
- W4283278045 hasPublicationYear "2022" @default.
- W4283278045 type Work @default.
- W4283278045 citedByCount "3" @default.
- W4283278045 countsByYear W42832780452023 @default.
- W4283278045 crossrefType "journal-article" @default.
- W4283278045 hasAuthorship W4283278045A5023804988 @default.
- W4283278045 hasAuthorship W4283278045A5046818830 @default.
- W4283278045 hasAuthorship W4283278045A5048634311 @default.
- W4283278045 hasBestOaLocation W42832780451 @default.
- W4283278045 hasConcept C119857082 @default.
- W4283278045 hasConcept C127313418 @default.
- W4283278045 hasConcept C151730666 @default.
- W4283278045 hasConcept C153127940 @default.
- W4283278045 hasConcept C154945302 @default.
- W4283278045 hasConcept C159390177 @default.
- W4283278045 hasConcept C2779096232 @default.
- W4283278045 hasConcept C2779538338 @default.
- W4283278045 hasConcept C2780092901 @default.
- W4283278045 hasConcept C39432304 @default.
- W4283278045 hasConcept C41008148 @default.
- W4283278045 hasConcept C50644808 @default.
- W4283278045 hasConcept C78762247 @default.
- W4283278045 hasConcept C87717796 @default.
- W4283278045 hasConcept C94293008 @default.
- W4283278045 hasConceptScore W4283278045C119857082 @default.
- W4283278045 hasConceptScore W4283278045C127313418 @default.
- W4283278045 hasConceptScore W4283278045C151730666 @default.
- W4283278045 hasConceptScore W4283278045C153127940 @default.
- W4283278045 hasConceptScore W4283278045C154945302 @default.
- W4283278045 hasConceptScore W4283278045C159390177 @default.
- W4283278045 hasConceptScore W4283278045C2779096232 @default.
- W4283278045 hasConceptScore W4283278045C2779538338 @default.
- W4283278045 hasConceptScore W4283278045C2780092901 @default.
- W4283278045 hasConceptScore W4283278045C39432304 @default.
- W4283278045 hasConceptScore W4283278045C41008148 @default.
- W4283278045 hasConceptScore W4283278045C50644808 @default.
- W4283278045 hasConceptScore W4283278045C78762247 @default.
- W4283278045 hasConceptScore W4283278045C87717796 @default.
- W4283278045 hasConceptScore W4283278045C94293008 @default.
- W4283278045 hasLocation W42832780451 @default.
- W4283278045 hasLocation W42832780452 @default.
- W4283278045 hasLocation W42832780453 @default.
- W4283278045 hasOpenAccess W4283278045 @default.
- W4283278045 hasPrimaryLocation W42832780451 @default.
- W4283278045 hasRelatedWork W2289505521 @default.
- W4283278045 hasRelatedWork W2761203336 @default.
- W4283278045 hasRelatedWork W2944249776 @default.
- W4283278045 hasRelatedWork W3010044303 @default.
- W4283278045 hasRelatedWork W3120342355 @default.
- W4283278045 hasRelatedWork W3159764166 @default.
- W4283278045 hasRelatedWork W3209870022 @default.
- W4283278045 hasRelatedWork W4254511260 @default.