Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283278507> ?p ?o ?g. }
- W4283278507 endingPage "106769" @default.
- W4283278507 startingPage "106769" @default.
- W4283278507 abstract "Excessive rainwater infiltration can be an important causal agent of both slope and whole tree uprooting failures. Early warnings or stabilization measures on high-risk slopes or trees are critically important. To identify the high-risk areas, it is necessary to conduct seepage, slope and tree stability analyses over a large region. Given the spatial variability of soil properties, a soil database is therefore required before performing distributed or Geographical Information System (GIS) -based water balance and stability analyses. Considering that the unsaturated soil properties could be very different from saturated soil properties, in this study, a soil database containing both saturated and unsaturated hydraulic and mechanical soil properties was developed for the first time. Machine learning methods were used to predict the unknown soil properties. Based on the predicted soil properties, spatial distributions of different saturated and unsaturated soil properties were generated using the ordinary kriging method. Then the soil database was developed with Singapore island being divided into 97 zones, with each zone having similar soil properties. In this study, the importance of different input variables in soil properties prediction was also investigated. In addition to soil plasticity (i.e., Liquid Limit (LL), Plastic Limit (PL) and Plasticity Index (PI)) and grain size distribution (i.e., gravel, sand, and fines fractions), location (i.e., longitude and latitude) was found to be of high importance as well and are recommended to be used as input variables to predict soil properties, especially when data volume is relatively limited. For those soil properties that cover a large range of values, model performance is better when logarithm values were used as the outputs. Moreover, given the possible correlation between some output parameters, the prediction of the Soil-water Characteristic Curve (SWCC) from a multi-output model is recommended after comparing its performance with a single output model. Furthermore, the performance of two commonly used machine learning methods (i.e., random forest regression and artificial neural network) in soil properties prediction were compared and the prediction error resulting from the random forest regression method was generally smaller. The developed database includes the mean values of saturated permeability, saturated and unsaturated shear strength parameters, and SWCC in each zone. The database can be applied in regional GIS-based water balance and slope stability analyses to account for the spatial heterogeneity instead of assuming constant soil properties." @default.
- W4283278507 created "2022-06-23" @default.
- W4283278507 creator A5009644457 @default.
- W4283278507 creator A5013663763 @default.
- W4283278507 creator A5023578647 @default.
- W4283278507 creator A5030130872 @default.
- W4283278507 creator A5053027190 @default.
- W4283278507 date "2022-09-01" @default.
- W4283278507 modified "2023-09-26" @default.
- W4283278507 title "Soil database development with the application of machine learning methods in soil properties prediction" @default.
- W4283278507 cites W1974468087 @default.
- W4283278507 cites W1977180542 @default.
- W4283278507 cites W1993310267 @default.
- W4283278507 cites W2035543413 @default.
- W4283278507 cites W2070299575 @default.
- W4283278507 cites W2091621452 @default.
- W4283278507 cites W2124955104 @default.
- W4283278507 cites W2139481755 @default.
- W4283278507 cites W2155300412 @default.
- W4283278507 cites W2175658910 @default.
- W4283278507 cites W2379635838 @default.
- W4283278507 cites W2555130351 @default.
- W4283278507 cites W2763649659 @default.
- W4283278507 cites W2797086020 @default.
- W4283278507 cites W2919115771 @default.
- W4283278507 cites W2923985287 @default.
- W4283278507 cites W2950102793 @default.
- W4283278507 cites W2955020062 @default.
- W4283278507 cites W2956141415 @default.
- W4283278507 cites W3001588044 @default.
- W4283278507 cites W3013498854 @default.
- W4283278507 cites W3036777983 @default.
- W4283278507 cites W3087340769 @default.
- W4283278507 cites W3096542451 @default.
- W4283278507 cites W3128396965 @default.
- W4283278507 cites W3144875240 @default.
- W4283278507 cites W3155708838 @default.
- W4283278507 cites W3158523518 @default.
- W4283278507 cites W4206651039 @default.
- W4283278507 cites W4214641256 @default.
- W4283278507 doi "https://doi.org/10.1016/j.enggeo.2022.106769" @default.
- W4283278507 hasPublicationYear "2022" @default.
- W4283278507 type Work @default.
- W4283278507 citedByCount "7" @default.
- W4283278507 countsByYear W42832785072022 @default.
- W4283278507 countsByYear W42832785072023 @default.
- W4283278507 crossrefType "journal-article" @default.
- W4283278507 hasAuthorship W4283278507A5009644457 @default.
- W4283278507 hasAuthorship W4283278507A5013663763 @default.
- W4283278507 hasAuthorship W4283278507A5023578647 @default.
- W4283278507 hasAuthorship W4283278507A5030130872 @default.
- W4283278507 hasAuthorship W4283278507A5053027190 @default.
- W4283278507 hasConcept C104471815 @default.
- W4283278507 hasConcept C116973930 @default.
- W4283278507 hasConcept C127313418 @default.
- W4283278507 hasConcept C152494472 @default.
- W4283278507 hasConcept C153294291 @default.
- W4283278507 hasConcept C153400128 @default.
- W4283278507 hasConcept C159390177 @default.
- W4283278507 hasConcept C159750122 @default.
- W4283278507 hasConcept C164285268 @default.
- W4283278507 hasConcept C174200844 @default.
- W4283278507 hasConcept C187320778 @default.
- W4283278507 hasConcept C205649164 @default.
- W4283278507 hasConcept C24939127 @default.
- W4283278507 hasConcept C39432304 @default.
- W4283278507 hasConcept C63184880 @default.
- W4283278507 hasConcept C71864017 @default.
- W4283278507 hasConcept C76886044 @default.
- W4283278507 hasConceptScore W4283278507C104471815 @default.
- W4283278507 hasConceptScore W4283278507C116973930 @default.
- W4283278507 hasConceptScore W4283278507C127313418 @default.
- W4283278507 hasConceptScore W4283278507C152494472 @default.
- W4283278507 hasConceptScore W4283278507C153294291 @default.
- W4283278507 hasConceptScore W4283278507C153400128 @default.
- W4283278507 hasConceptScore W4283278507C159390177 @default.
- W4283278507 hasConceptScore W4283278507C159750122 @default.
- W4283278507 hasConceptScore W4283278507C164285268 @default.
- W4283278507 hasConceptScore W4283278507C174200844 @default.
- W4283278507 hasConceptScore W4283278507C187320778 @default.
- W4283278507 hasConceptScore W4283278507C205649164 @default.
- W4283278507 hasConceptScore W4283278507C24939127 @default.
- W4283278507 hasConceptScore W4283278507C39432304 @default.
- W4283278507 hasConceptScore W4283278507C63184880 @default.
- W4283278507 hasConceptScore W4283278507C71864017 @default.
- W4283278507 hasConceptScore W4283278507C76886044 @default.
- W4283278507 hasFunder F4320320758 @default.
- W4283278507 hasLocation W42832785071 @default.
- W4283278507 hasOpenAccess W4283278507 @default.
- W4283278507 hasPrimaryLocation W42832785071 @default.
- W4283278507 hasRelatedWork W1987794739 @default.
- W4283278507 hasRelatedWork W2118544387 @default.
- W4283278507 hasRelatedWork W2183155958 @default.
- W4283278507 hasRelatedWork W2349739194 @default.
- W4283278507 hasRelatedWork W2590341573 @default.
- W4283278507 hasRelatedWork W3158467599 @default.
- W4283278507 hasRelatedWork W3205053352 @default.
- W4283278507 hasRelatedWork W4223487889 @default.