Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283278617> ?p ?o ?g. }
- W4283278617 endingPage "1734" @default.
- W4283278617 startingPage "1710" @default.
- W4283278617 abstract "Abstract Reliable wind farm short‐term output power prediction plays a crucial role in the safety and economy of power system operation. By embedding multiple neural network methods, such as long short‐term memory (LSTM) neural network, multiple optimized BP neural network and wavelet neural network (WNN), combined with multiple methods based on signal decomposition and reconstruction to evaluate the short‐term prediction effect. In this study, the variational modal decomposition (VMD) method and the complete ensemble empirical mode decomposition with adaptive noise (CEEMDAN) are used to reduce the fluctuation of the original wind power signal. Besides, the intrinsic mode function (IMF) signals obtained by VMD and CEEMDAN methods are used. By predicting the IMF signals, the prediction error of each signal can be reduced, and the accuracy of wind power prediction can be indirectly improved. In order to test the validity of the proposed composite model, the validation prediction and rolling prediction of 72 h with a resolution of 10 min were carried out, respectively, using the data of Caijiagou wind farm in 2018. Through experiments, the relationship between the two predictions is analyzed, which provides an important reference for the selection of the prediction model. Corresponding results show that the proposed VMD‐LSTM and CEEMDAN‐LSTM methods significantly outperform other benchmark methods and provide very satisfactory results in both the accuracy and stability of wind farm power prediction." @default.
- W4283278617 created "2022-06-23" @default.
- W4283278617 creator A5002721385 @default.
- W4283278617 creator A5005241255 @default.
- W4283278617 creator A5053163610 @default.
- W4283278617 creator A5083869917 @default.
- W4283278617 date "2022-06-20" @default.
- W4283278617 modified "2023-09-26" @default.
- W4283278617 title "Research on short‐term output power forecast model of wind farm based on neural network combination algorithm" @default.
- W4283278617 cites W1578897004 @default.
- W4283278617 cites W1654820164 @default.
- W4283278617 cites W1820534876 @default.
- W4283278617 cites W1978429571 @default.
- W4283278617 cites W2000878957 @default.
- W4283278617 cites W2000982976 @default.
- W4283278617 cites W2057624533 @default.
- W4283278617 cites W2066890570 @default.
- W4283278617 cites W2084478514 @default.
- W4283278617 cites W2218500974 @default.
- W4283278617 cites W2327604715 @default.
- W4283278617 cites W2342762671 @default.
- W4283278617 cites W2765776117 @default.
- W4283278617 cites W2777889442 @default.
- W4283278617 cites W2778436178 @default.
- W4283278617 cites W2790834859 @default.
- W4283278617 cites W2791961911 @default.
- W4283278617 cites W2792578766 @default.
- W4283278617 cites W2794466895 @default.
- W4283278617 cites W2889390940 @default.
- W4283278617 cites W2896864326 @default.
- W4283278617 cites W2922403949 @default.
- W4283278617 cites W2973117460 @default.
- W4283278617 cites W2980223420 @default.
- W4283278617 cites W3045439457 @default.
- W4283278617 cites W3112298559 @default.
- W4283278617 cites W3126304207 @default.
- W4283278617 cites W3155703044 @default.
- W4283278617 cites W4206639056 @default.
- W4283278617 cites W602833636 @default.
- W4283278617 doi "https://doi.org/10.1002/we.2763" @default.
- W4283278617 hasPublicationYear "2022" @default.
- W4283278617 type Work @default.
- W4283278617 citedByCount "3" @default.
- W4283278617 countsByYear W42832786172022 @default.
- W4283278617 countsByYear W42832786172023 @default.
- W4283278617 crossrefType "journal-article" @default.
- W4283278617 hasAuthorship W4283278617A5002721385 @default.
- W4283278617 hasAuthorship W4283278617A5005241255 @default.
- W4283278617 hasAuthorship W4283278617A5053163610 @default.
- W4283278617 hasAuthorship W4283278617A5083869917 @default.
- W4283278617 hasBestOaLocation W42832786171 @default.
- W4283278617 hasConcept C111919701 @default.
- W4283278617 hasConcept C112633086 @default.
- W4283278617 hasConcept C11413529 @default.
- W4283278617 hasConcept C115961682 @default.
- W4283278617 hasConcept C119599485 @default.
- W4283278617 hasConcept C121332964 @default.
- W4283278617 hasConcept C127413603 @default.
- W4283278617 hasConcept C13280743 @default.
- W4283278617 hasConcept C154945302 @default.
- W4283278617 hasConcept C163258240 @default.
- W4283278617 hasConcept C185798385 @default.
- W4283278617 hasConcept C199360897 @default.
- W4283278617 hasConcept C205649164 @default.
- W4283278617 hasConcept C25570617 @default.
- W4283278617 hasConcept C2775924081 @default.
- W4283278617 hasConcept C2779843651 @default.
- W4283278617 hasConcept C2781084341 @default.
- W4283278617 hasConcept C41008148 @default.
- W4283278617 hasConcept C47446073 @default.
- W4283278617 hasConcept C48677424 @default.
- W4283278617 hasConcept C50644808 @default.
- W4283278617 hasConcept C61797465 @default.
- W4283278617 hasConcept C62520636 @default.
- W4283278617 hasConcept C76155785 @default.
- W4283278617 hasConcept C78600449 @default.
- W4283278617 hasConcept C89227174 @default.
- W4283278617 hasConcept C99498987 @default.
- W4283278617 hasConceptScore W4283278617C111919701 @default.
- W4283278617 hasConceptScore W4283278617C112633086 @default.
- W4283278617 hasConceptScore W4283278617C11413529 @default.
- W4283278617 hasConceptScore W4283278617C115961682 @default.
- W4283278617 hasConceptScore W4283278617C119599485 @default.
- W4283278617 hasConceptScore W4283278617C121332964 @default.
- W4283278617 hasConceptScore W4283278617C127413603 @default.
- W4283278617 hasConceptScore W4283278617C13280743 @default.
- W4283278617 hasConceptScore W4283278617C154945302 @default.
- W4283278617 hasConceptScore W4283278617C163258240 @default.
- W4283278617 hasConceptScore W4283278617C185798385 @default.
- W4283278617 hasConceptScore W4283278617C199360897 @default.
- W4283278617 hasConceptScore W4283278617C205649164 @default.
- W4283278617 hasConceptScore W4283278617C25570617 @default.
- W4283278617 hasConceptScore W4283278617C2775924081 @default.
- W4283278617 hasConceptScore W4283278617C2779843651 @default.
- W4283278617 hasConceptScore W4283278617C2781084341 @default.
- W4283278617 hasConceptScore W4283278617C41008148 @default.
- W4283278617 hasConceptScore W4283278617C47446073 @default.
- W4283278617 hasConceptScore W4283278617C48677424 @default.