Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283310733> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4283310733 endingPage "438" @default.
- W4283310733 startingPage "424" @default.
- W4283310733 abstract "The friction stir welding (FSW) process is an effective approach to produce joints having superior quality. Unfortunately, most published investigations primarily addressed optimizing process parameters to boost product quality. In the current work, the FSW operation of the aluminum alloy has been considered and optimized to decrease the specific welding energy (SWE) and enhance the jointing efficiency (JE) as well as micro-hardness at the welded zone (MH). The parameter inputs are the rotational speed (S), welding speed (f), depth of penetration (D), and tool title angle (T). The optimal adaptive neuro-based-fuzzy inference system (ANFIS) models were utilized to propose the welding responses in terms of the FSW parameters, while the Taguchi method was applied to optimize the ANFIS operating parameters. The neighborhood cultivation genetic algorithm (NCGA) was employed to determine the best solution. The obtained results indicated that the optimal values of the S, f, D, and T are 560 RPM, 90 mm/min, 0.9 mm, and 2 deg, respectively. The SWE is decreased by 17.0%, while the JE and MH are improved by 2.3% and 6.4%, respectively at the optimal solution. The optimal ANFIS models for the welding responses were adequate and reliably employed to forecast the response values. The proposed optimization approach comprising the orthogonal array-based ANFIS, Taguchi, and NCGA could be effectively and efficiently utilized to save experimental costs as well as human efforts, produce optimal predictive models, and select optimum outcomes. The observed findings contributed significant data to determine optimal FSW parameters and enhance welding responses." @default.
- W4283310733 created "2022-06-24" @default.
- W4283310733 creator A5004041895 @default.
- W4283310733 creator A5087105119 @default.
- W4283310733 date "2022-06-22" @default.
- W4283310733 modified "2023-10-14" @default.
- W4283310733 title "Optimization of Friction Stir Welding Operation using Optimal Taguchi-based ANFIS and Genetic Algorithm" @default.
- W4283310733 doi "https://doi.org/10.5545/sv-jme.2022.111" @default.
- W4283310733 hasPublicationYear "2022" @default.
- W4283310733 type Work @default.
- W4283310733 citedByCount "4" @default.
- W4283310733 countsByYear W42833107332023 @default.
- W4283310733 crossrefType "journal-article" @default.
- W4283310733 hasAuthorship W4283310733A5004041895 @default.
- W4283310733 hasAuthorship W4283310733A5087105119 @default.
- W4283310733 hasBestOaLocation W42833107331 @default.
- W4283310733 hasConcept C126255220 @default.
- W4283310733 hasConcept C127413603 @default.
- W4283310733 hasConcept C154945302 @default.
- W4283310733 hasConcept C159985019 @default.
- W4283310733 hasConcept C186108316 @default.
- W4283310733 hasConcept C192562407 @default.
- W4283310733 hasConcept C19474535 @default.
- W4283310733 hasConcept C195975749 @default.
- W4283310733 hasConcept C33923547 @default.
- W4283310733 hasConcept C40367268 @default.
- W4283310733 hasConcept C41008148 @default.
- W4283310733 hasConcept C42632107 @default.
- W4283310733 hasConcept C58166 @default.
- W4283310733 hasConcept C78519656 @default.
- W4283310733 hasConcept C81063470 @default.
- W4283310733 hasConcept C83469408 @default.
- W4283310733 hasConcept C8880873 @default.
- W4283310733 hasConceptScore W4283310733C126255220 @default.
- W4283310733 hasConceptScore W4283310733C127413603 @default.
- W4283310733 hasConceptScore W4283310733C154945302 @default.
- W4283310733 hasConceptScore W4283310733C159985019 @default.
- W4283310733 hasConceptScore W4283310733C186108316 @default.
- W4283310733 hasConceptScore W4283310733C192562407 @default.
- W4283310733 hasConceptScore W4283310733C19474535 @default.
- W4283310733 hasConceptScore W4283310733C195975749 @default.
- W4283310733 hasConceptScore W4283310733C33923547 @default.
- W4283310733 hasConceptScore W4283310733C40367268 @default.
- W4283310733 hasConceptScore W4283310733C41008148 @default.
- W4283310733 hasConceptScore W4283310733C42632107 @default.
- W4283310733 hasConceptScore W4283310733C58166 @default.
- W4283310733 hasConceptScore W4283310733C78519656 @default.
- W4283310733 hasConceptScore W4283310733C81063470 @default.
- W4283310733 hasConceptScore W4283310733C83469408 @default.
- W4283310733 hasConceptScore W4283310733C8880873 @default.
- W4283310733 hasIssue "6" @default.
- W4283310733 hasLocation W42833107331 @default.
- W4283310733 hasLocation W42833107332 @default.
- W4283310733 hasLocation W42833107333 @default.
- W4283310733 hasLocation W42833107334 @default.
- W4283310733 hasOpenAccess W4283310733 @default.
- W4283310733 hasPrimaryLocation W42833107331 @default.
- W4283310733 hasRelatedWork W1972584411 @default.
- W4283310733 hasRelatedWork W2514511647 @default.
- W4283310733 hasRelatedWork W2944952013 @default.
- W4283310733 hasRelatedWork W3190827480 @default.
- W4283310733 hasRelatedWork W3202153793 @default.
- W4283310733 hasRelatedWork W3209659952 @default.
- W4283310733 hasRelatedWork W4238964976 @default.
- W4283310733 hasRelatedWork W4243965494 @default.
- W4283310733 hasRelatedWork W4283310733 @default.
- W4283310733 hasRelatedWork W4323538766 @default.
- W4283310733 hasVolume "68" @default.
- W4283310733 isParatext "false" @default.
- W4283310733 isRetracted "false" @default.
- W4283310733 workType "article" @default.