Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283314902> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4283314902 abstract "Widespread deployment of spectrally efficient mobile networks, advancements in mobile devices, and proliferation of attractive applications has led to an exponential increase in mobile data traffic. Mobile Network Operators (MNOs) benefit from the associated revenue generation while putting efforts to meet customers’ expectations of delivered services. Having a clear knowledge of the traffic demand is critical for network dimensioning, optimization, resource allocation, market planning, and the like. As the traffic demand, among others, is a function of customers’ behavior and settlement patterns, land use, and time of the day, capturing traffic characteristics in both temporal and spatial dimensions is needed. Moreover, other parameters, such as the number of users and data throughput, inherently contain traffic-related information, necessitating a multivariate approach for understanding the traffic demand. Realizing the multidimensional and multivariate nature of the mobile data traffic, in this paper, we propose a multivariate and hybrid Convolutional Neural Network and Long Short-Term Memory network (CNN-LSTM) data traffic prediction model. The model is built on mobile traffic data collected from a Network Operator for Long-Term Evolution (LTE) network. The results confirm that the proposed model outperforms its univariate counterparts in Root Mean Square Error (RMSE) and Mean Absolute Percentage Error (MAPE) by 58% and 50%, respectively. Moreover, the model is further compared with CNN-only univariate and multivariate models, which it also outperforms. The comparisons substantiate the achievable improvements because of the hybrid and multivariate nature of the prediction algorithm." @default.
- W4283314902 created "2022-06-24" @default.
- W4283314902 creator A5001147600 @default.
- W4283314902 creator A5055547056 @default.
- W4283314902 creator A5065840997 @default.
- W4283314902 creator A5073517129 @default.
- W4283314902 creator A5075711857 @default.
- W4283314902 date "2022-06-21" @default.
- W4283314902 modified "2023-09-25" @default.
- W4283314902 title "A Multivariate Approach for Spatiotemporal Mobile Data Traffic Prediction" @default.
- W4283314902 cites W1894414046 @default.
- W4283314902 cites W2910883594 @default.
- W4283314902 cites W2948490758 @default.
- W4283314902 cites W3004417816 @default.
- W4283314902 cites W3088157793 @default.
- W4283314902 cites W3089443456 @default.
- W4283314902 cites W3107372501 @default.
- W4283314902 cites W3109662501 @default.
- W4283314902 cites W3110770815 @default.
- W4283314902 cites W3111518852 @default.
- W4283314902 doi "https://doi.org/10.3390/engproc2022018010" @default.
- W4283314902 hasPublicationYear "2022" @default.
- W4283314902 type Work @default.
- W4283314902 citedByCount "0" @default.
- W4283314902 crossrefType "proceedings-article" @default.
- W4283314902 hasAuthorship W4283314902A5001147600 @default.
- W4283314902 hasAuthorship W4283314902A5055547056 @default.
- W4283314902 hasAuthorship W4283314902A5065840997 @default.
- W4283314902 hasAuthorship W4283314902A5073517129 @default.
- W4283314902 hasAuthorship W4283314902A5075711857 @default.
- W4283314902 hasBestOaLocation W42833149021 @default.
- W4283314902 hasConcept C105795698 @default.
- W4283314902 hasConcept C119857082 @default.
- W4283314902 hasConcept C124101348 @default.
- W4283314902 hasConcept C133972139 @default.
- W4283314902 hasConcept C139945424 @default.
- W4283314902 hasConcept C150217764 @default.
- W4283314902 hasConcept C153646914 @default.
- W4283314902 hasConcept C154945302 @default.
- W4283314902 hasConcept C161584116 @default.
- W4283314902 hasConcept C176715033 @default.
- W4283314902 hasConcept C199163554 @default.
- W4283314902 hasConcept C31258907 @default.
- W4283314902 hasConcept C33923547 @default.
- W4283314902 hasConcept C41008148 @default.
- W4283314902 hasConcept C50644808 @default.
- W4283314902 hasConcept C75684735 @default.
- W4283314902 hasConcept C79403827 @default.
- W4283314902 hasConceptScore W4283314902C105795698 @default.
- W4283314902 hasConceptScore W4283314902C119857082 @default.
- W4283314902 hasConceptScore W4283314902C124101348 @default.
- W4283314902 hasConceptScore W4283314902C133972139 @default.
- W4283314902 hasConceptScore W4283314902C139945424 @default.
- W4283314902 hasConceptScore W4283314902C150217764 @default.
- W4283314902 hasConceptScore W4283314902C153646914 @default.
- W4283314902 hasConceptScore W4283314902C154945302 @default.
- W4283314902 hasConceptScore W4283314902C161584116 @default.
- W4283314902 hasConceptScore W4283314902C176715033 @default.
- W4283314902 hasConceptScore W4283314902C199163554 @default.
- W4283314902 hasConceptScore W4283314902C31258907 @default.
- W4283314902 hasConceptScore W4283314902C33923547 @default.
- W4283314902 hasConceptScore W4283314902C41008148 @default.
- W4283314902 hasConceptScore W4283314902C50644808 @default.
- W4283314902 hasConceptScore W4283314902C75684735 @default.
- W4283314902 hasConceptScore W4283314902C79403827 @default.
- W4283314902 hasLocation W42833149021 @default.
- W4283314902 hasOpenAccess W4283314902 @default.
- W4283314902 hasPrimaryLocation W42833149021 @default.
- W4283314902 hasRelatedWork W2116574033 @default.
- W4283314902 hasRelatedWork W2354804553 @default.
- W4283314902 hasRelatedWork W2887803518 @default.
- W4283314902 hasRelatedWork W2978914291 @default.
- W4283314902 hasRelatedWork W3193365185 @default.
- W4283314902 hasRelatedWork W3197767108 @default.
- W4283314902 hasRelatedWork W4200212090 @default.
- W4283314902 hasRelatedWork W4200391649 @default.
- W4283314902 hasRelatedWork W4236121314 @default.
- W4283314902 hasRelatedWork W4381327759 @default.
- W4283314902 isParatext "false" @default.
- W4283314902 isRetracted "false" @default.
- W4283314902 workType "article" @default.