Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283317342> ?p ?o ?g. }
- W4283317342 endingPage "4569" @default.
- W4283317342 startingPage "4569" @default.
- W4283317342 abstract "The mining industry’s increased energy consumption has resulted in a slew of climate-related effects on the environment, many of which have direct implications for humanity’s survival. The forecast of mine site energy use is one of the low-cost approaches for energy conservation. Accurate predictions do indeed assist us in better understanding the source of high energy consumption and aid in making early decisions by setting expectations. Machine Learning (ML) methods are known to be the best approach for achieving desired results in prediction tasks in this area. As a result, machine learning has been used in several research involving energy predictions in operational and residential buildings. Only few research, however, has investigated the feasibility of machine learning algorithms for predicting energy use in open-pit mines. To close this gap, this work provides an application of machine learning algorithms in the RapidMiner tool for predicting energy consumption time series using real-time data obtained from a smart grid placed in an experimental open-pit mine. This study compares the performance of four machine learning (ML) algorithms for predicting daily energy consumption: Artificial Neural Network (ANN), Support Vector Machine (SVM), Decision Tree (DT), and Random Forest (RF). The models were trained, tested, and then evaluated. In order to assess the models’ performance four metrics were used in this study, namely correlation (R), mean absolute error (MAE), root mean squared error (RMSE), and root relative squared error (RRSE). The performance of the models reveals RF to be the most effective predictive model for energy forecasting in similar cases." @default.
- W4283317342 created "2022-06-24" @default.
- W4283317342 creator A5019772342 @default.
- W4283317342 creator A5057934571 @default.
- W4283317342 creator A5061493500 @default.
- W4283317342 creator A5063193219 @default.
- W4283317342 creator A5087409742 @default.
- W4283317342 date "2022-06-22" @default.
- W4283317342 modified "2023-10-06" @default.
- W4283317342 title "Smart Energy Management: A Comparative Study of Energy Consumption Forecasting Algorithms for an Experimental Open-Pit Mine" @default.
- W4283317342 cites W1023118562 @default.
- W4283317342 cites W1179171804 @default.
- W4283317342 cites W1967379861 @default.
- W4283317342 cites W1990910451 @default.
- W4283317342 cites W1991312358 @default.
- W4283317342 cites W2016210396 @default.
- W4283317342 cites W2032983086 @default.
- W4283317342 cites W2037381129 @default.
- W4283317342 cites W2039240409 @default.
- W4283317342 cites W2048608810 @default.
- W4283317342 cites W2051607409 @default.
- W4283317342 cites W2064469609 @default.
- W4283317342 cites W2096096387 @default.
- W4283317342 cites W2113231897 @default.
- W4283317342 cites W2114534220 @default.
- W4283317342 cites W2130608062 @default.
- W4283317342 cites W2132165476 @default.
- W4283317342 cites W2142827986 @default.
- W4283317342 cites W2153949457 @default.
- W4283317342 cites W2161336914 @default.
- W4283317342 cites W2543909292 @default.
- W4283317342 cites W2553338364 @default.
- W4283317342 cites W2605614336 @default.
- W4283317342 cites W2754029504 @default.
- W4283317342 cites W2754252319 @default.
- W4283317342 cites W2757275169 @default.
- W4283317342 cites W2758838547 @default.
- W4283317342 cites W2761146210 @default.
- W4283317342 cites W2791838709 @default.
- W4283317342 cites W2810350849 @default.
- W4283317342 cites W2936343203 @default.
- W4283317342 cites W2948490758 @default.
- W4283317342 cites W2994209110 @default.
- W4283317342 cites W3003484286 @default.
- W4283317342 cites W3010335229 @default.
- W4283317342 cites W3016830854 @default.
- W4283317342 cites W3089052061 @default.
- W4283317342 cites W3094703244 @default.
- W4283317342 cites W3104996215 @default.
- W4283317342 cites W3112325088 @default.
- W4283317342 cites W3137516072 @default.
- W4283317342 cites W3206319799 @default.
- W4283317342 cites W3213761405 @default.
- W4283317342 cites W4206258478 @default.
- W4283317342 cites W4210778017 @default.
- W4283317342 cites W4224295983 @default.
- W4283317342 cites W4226112539 @default.
- W4283317342 doi "https://doi.org/10.3390/en15134569" @default.
- W4283317342 hasPublicationYear "2022" @default.
- W4283317342 type Work @default.
- W4283317342 citedByCount "18" @default.
- W4283317342 countsByYear W42833173422022 @default.
- W4283317342 countsByYear W42833173422023 @default.
- W4283317342 crossrefType "journal-article" @default.
- W4283317342 hasAuthorship W4283317342A5019772342 @default.
- W4283317342 hasAuthorship W4283317342A5057934571 @default.
- W4283317342 hasAuthorship W4283317342A5061493500 @default.
- W4283317342 hasAuthorship W4283317342A5063193219 @default.
- W4283317342 hasAuthorship W4283317342A5087409742 @default.
- W4283317342 hasBestOaLocation W42833173421 @default.
- W4283317342 hasConcept C105795698 @default.
- W4283317342 hasConcept C113174947 @default.
- W4283317342 hasConcept C11413529 @default.
- W4283317342 hasConcept C119599485 @default.
- W4283317342 hasConcept C119857082 @default.
- W4283317342 hasConcept C12267149 @default.
- W4283317342 hasConcept C124101348 @default.
- W4283317342 hasConcept C127413603 @default.
- W4283317342 hasConcept C134306372 @default.
- W4283317342 hasConcept C139945424 @default.
- W4283317342 hasConcept C154945302 @default.
- W4283317342 hasConcept C169258074 @default.
- W4283317342 hasConcept C186370098 @default.
- W4283317342 hasConcept C2780165032 @default.
- W4283317342 hasConcept C33923547 @default.
- W4283317342 hasConcept C41008148 @default.
- W4283317342 hasConcept C45804977 @default.
- W4283317342 hasConcept C50644808 @default.
- W4283317342 hasConcept C84525736 @default.
- W4283317342 hasConceptScore W4283317342C105795698 @default.
- W4283317342 hasConceptScore W4283317342C113174947 @default.
- W4283317342 hasConceptScore W4283317342C11413529 @default.
- W4283317342 hasConceptScore W4283317342C119599485 @default.
- W4283317342 hasConceptScore W4283317342C119857082 @default.
- W4283317342 hasConceptScore W4283317342C12267149 @default.
- W4283317342 hasConceptScore W4283317342C124101348 @default.
- W4283317342 hasConceptScore W4283317342C127413603 @default.
- W4283317342 hasConceptScore W4283317342C134306372 @default.