Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283323360> ?p ?o ?g. }
- W4283323360 abstract "Purpose To develop handcrafted radiomics (HCR) and deep learning (DL) based automated diagnostic tools that can differentiate between idiopathic pulmonary fibrosis (IPF) and non-IPF interstitial lung diseases (ILDs) in patients using high-resolution computed tomography (HRCT) scans. Material and Methods In this retrospective study, 474 HRCT scans were included (mean age, 64.10 years ± 9.57 [SD]). Five-fold cross-validation was performed on 365 HRCT scans. Furthermore, an external dataset comprising 109 patients was used as a test set. An HCR model, a DL model, and an ensemble of HCR and DL model were developed. A virtual in-silico trial was conducted with two radiologists and one pulmonologist on the same external test set for performance comparison. The performance was compared using DeLong method and McNemar test. Shapley Additive exPlanations (SHAP) plots and Grad-CAM heatmaps were used for the post-hoc interpretability of HCR and DL models, respectively. Results In five-fold cross-validation, the HCR model, DL model, and the ensemble of HCR and DL models achieved accuracies of 76.2 ± 6.8, 77.9 ± 4.6, and 85.2 ± 2.7%, respectively. For the diagnosis of IPF and non-IPF ILDs on the external test set, the HCR, DL, and the ensemble of HCR and DL models achieved accuracies of 76.1, 77.9, and 85.3%, respectively. The ensemble model outperformed the diagnostic performance of clinicians who achieved a mean accuracy of 66.3 ± 6.7% ( p < 0.05) during the in-silico trial. The area under the receiver operating characteristic curve (AUC) for the ensemble model on the test set was 0.917 which was significantly higher than the HCR model (0.817, p = 0.02) and the DL model (0.823, p = 0.005). The agreement between HCR and DL models was 61.4%, and the accuracy and specificity for the predictions when both the models agree were 93 and 97%, respectively. SHAP analysis showed the texture features as the most important features for IPF diagnosis and Grad-CAM showed that the model focused on the clinically relevant part of the image. Conclusion Deep learning and HCR models can complement each other and serve as useful clinical aids for the diagnosis of IPF and non-IPF ILDs." @default.
- W4283323360 created "2022-06-24" @default.
- W4283323360 creator A5001892623 @default.
- W4283323360 creator A5019398390 @default.
- W4283323360 creator A5023469305 @default.
- W4283323360 creator A5030456446 @default.
- W4283323360 creator A5032202100 @default.
- W4283323360 creator A5034894826 @default.
- W4283323360 creator A5044070598 @default.
- W4283323360 creator A5046098333 @default.
- W4283323360 creator A5058987737 @default.
- W4283323360 creator A5062677230 @default.
- W4283323360 creator A5085653895 @default.
- W4283323360 date "2022-06-23" @default.
- W4283323360 modified "2023-10-14" @default.
- W4283323360 title "Diagnosis of Idiopathic Pulmonary Fibrosis in High-Resolution Computed Tomography Scans Using a Combination of Handcrafted Radiomics and Deep Learning" @default.
- W4283323360 cites W1239143784 @default.
- W4283323360 cites W2116000536 @default.
- W4283323360 cites W2117488044 @default.
- W4283323360 cites W2125079712 @default.
- W4283323360 cites W2128739912 @default.
- W4283323360 cites W2149661971 @default.
- W4283323360 cites W2167383172 @default.
- W4283323360 cites W2174661749 @default.
- W4283323360 cites W2341043325 @default.
- W4283323360 cites W2599075603 @default.
- W4283323360 cites W2763355946 @default.
- W4283323360 cites W2781702938 @default.
- W4283323360 cites W2889197569 @default.
- W4283323360 cites W2891706393 @default.
- W4283323360 cites W2896844611 @default.
- W4283323360 cites W2914531051 @default.
- W4283323360 cites W2915510464 @default.
- W4283323360 cites W2915540738 @default.
- W4283323360 cites W2919115771 @default.
- W4283323360 cites W2925031052 @default.
- W4283323360 cites W2944540533 @default.
- W4283323360 cites W2952058328 @default.
- W4283323360 cites W2965399740 @default.
- W4283323360 cites W2998789541 @default.
- W4283323360 cites W3004476491 @default.
- W4283323360 cites W3008530522 @default.
- W4283323360 cites W3020992444 @default.
- W4283323360 cites W3028711397 @default.
- W4283323360 cites W3032938107 @default.
- W4283323360 cites W3139508154 @default.
- W4283323360 cites W3158487647 @default.
- W4283323360 cites W3184751587 @default.
- W4283323360 cites W3193956823 @default.
- W4283323360 cites W3211317523 @default.
- W4283323360 cites W4206981679 @default.
- W4283323360 doi "https://doi.org/10.3389/fmed.2022.915243" @default.
- W4283323360 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35814761" @default.
- W4283323360 hasPublicationYear "2022" @default.
- W4283323360 type Work @default.
- W4283323360 citedByCount "5" @default.
- W4283323360 countsByYear W42833233602023 @default.
- W4283323360 crossrefType "journal-article" @default.
- W4283323360 hasAuthorship W4283323360A5001892623 @default.
- W4283323360 hasAuthorship W4283323360A5019398390 @default.
- W4283323360 hasAuthorship W4283323360A5023469305 @default.
- W4283323360 hasAuthorship W4283323360A5030456446 @default.
- W4283323360 hasAuthorship W4283323360A5032202100 @default.
- W4283323360 hasAuthorship W4283323360A5034894826 @default.
- W4283323360 hasAuthorship W4283323360A5044070598 @default.
- W4283323360 hasAuthorship W4283323360A5046098333 @default.
- W4283323360 hasAuthorship W4283323360A5058987737 @default.
- W4283323360 hasAuthorship W4283323360A5062677230 @default.
- W4283323360 hasAuthorship W4283323360A5085653895 @default.
- W4283323360 hasBestOaLocation W42833233601 @default.
- W4283323360 hasConcept C105795698 @default.
- W4283323360 hasConcept C126322002 @default.
- W4283323360 hasConcept C126838900 @default.
- W4283323360 hasConcept C154945302 @default.
- W4283323360 hasConcept C169903167 @default.
- W4283323360 hasConcept C177713679 @default.
- W4283323360 hasConcept C186282968 @default.
- W4283323360 hasConcept C2777524225 @default.
- W4283323360 hasConcept C2777714996 @default.
- W4283323360 hasConcept C2778341716 @default.
- W4283323360 hasConcept C2778559731 @default.
- W4283323360 hasConcept C2910768427 @default.
- W4283323360 hasConcept C2989005 @default.
- W4283323360 hasConcept C33923547 @default.
- W4283323360 hasConcept C41008148 @default.
- W4283323360 hasConcept C51632099 @default.
- W4283323360 hasConcept C544519230 @default.
- W4283323360 hasConcept C71924100 @default.
- W4283323360 hasConceptScore W4283323360C105795698 @default.
- W4283323360 hasConceptScore W4283323360C126322002 @default.
- W4283323360 hasConceptScore W4283323360C126838900 @default.
- W4283323360 hasConceptScore W4283323360C154945302 @default.
- W4283323360 hasConceptScore W4283323360C169903167 @default.
- W4283323360 hasConceptScore W4283323360C177713679 @default.
- W4283323360 hasConceptScore W4283323360C186282968 @default.
- W4283323360 hasConceptScore W4283323360C2777524225 @default.
- W4283323360 hasConceptScore W4283323360C2777714996 @default.
- W4283323360 hasConceptScore W4283323360C2778341716 @default.
- W4283323360 hasConceptScore W4283323360C2778559731 @default.
- W4283323360 hasConceptScore W4283323360C2910768427 @default.