Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283367205> ?p ?o ?g. }
- W4283367205 endingPage "132138" @default.
- W4283367205 startingPage "132138" @default.
- W4283367205 abstract "This paper proposes an innovative approach to understand the conditioning process of a microwave gas sensor operating at room temperature based on the combination of its response and the interpretation of the mass spectrometer data. A large variation of the dielectric parameters and thus of the microwave response is due to water departure from the sensor surface. Consequently, the first step of the conditioning process is a carrier gas sweep of the sensor surface. The second step consists in pre-saturating the microwave gas sensor surface with a high concentration of the polluting gas which will be detected (here ammonia). This process results in a very good quality microwave response on the qualitative and quantitative aspects for the detection of ammonia in the air and is helping the work carried out in this article in artificial intelligence on microwave responses. A regressor machine learning model is applied on time samples of this sensor response to predict the ammonia concentration. Several machine learning algorithms are tested and compared. Principal Component Analysis is also tested to reduce the input data dimension, but results are not conclusive. The concentration profile is revised to reduce the bias induce by the presence of too much measurement data when no pollutant is present in the air. And the Mutlti-Layer Perceptron regressor give the best results with a mean absolute error of 32.13 ppm (8 %) over a range of 0–400 ppm and R-squared score of 0.87." @default.
- W4283367205 created "2022-06-25" @default.
- W4283367205 creator A5000722591 @default.
- W4283367205 creator A5002182441 @default.
- W4283367205 creator A5055827124 @default.
- W4283367205 creator A5063366604 @default.
- W4283367205 creator A5075633775 @default.
- W4283367205 creator A5081593305 @default.
- W4283367205 date "2022-09-01" @default.
- W4283367205 modified "2023-10-01" @default.
- W4283367205 title "From microwave gas sensor conditioning to ammonia concentration prediction by machine learning" @default.
- W4283367205 cites W1986008437 @default.
- W4283367205 cites W1988875210 @default.
- W4283367205 cites W2022364679 @default.
- W4283367205 cites W2035729201 @default.
- W4283367205 cites W2040657909 @default.
- W4283367205 cites W2041006361 @default.
- W4283367205 cites W2056896959 @default.
- W4283367205 cites W2068903005 @default.
- W4283367205 cites W2071031402 @default.
- W4283367205 cites W2073720466 @default.
- W4283367205 cites W2076078227 @default.
- W4283367205 cites W2081310910 @default.
- W4283367205 cites W2088151328 @default.
- W4283367205 cites W2090873679 @default.
- W4283367205 cites W2108594820 @default.
- W4283367205 cites W2121255437 @default.
- W4283367205 cites W2167775473 @default.
- W4283367205 cites W2554508973 @default.
- W4283367205 cites W2566613848 @default.
- W4283367205 cites W2608131598 @default.
- W4283367205 cites W2626019983 @default.
- W4283367205 cites W2739128211 @default.
- W4283367205 cites W2765538626 @default.
- W4283367205 cites W2766298394 @default.
- W4283367205 cites W2900806615 @default.
- W4283367205 cites W2911438314 @default.
- W4283367205 cites W2942802604 @default.
- W4283367205 cites W3025867972 @default.
- W4283367205 cites W3036032205 @default.
- W4283367205 cites W3081625936 @default.
- W4283367205 cites W3091935377 @default.
- W4283367205 cites W3099514962 @default.
- W4283367205 cites W3112033974 @default.
- W4283367205 cites W3123107220 @default.
- W4283367205 cites W3128498846 @default.
- W4283367205 cites W3128859852 @default.
- W4283367205 cites W3136302803 @default.
- W4283367205 cites W3158537203 @default.
- W4283367205 cites W3182706339 @default.
- W4283367205 cites W3198298769 @default.
- W4283367205 cites W3206760989 @default.
- W4283367205 cites W569095620 @default.
- W4283367205 cites W848090613 @default.
- W4283367205 doi "https://doi.org/10.1016/j.snb.2022.132138" @default.
- W4283367205 hasPublicationYear "2022" @default.
- W4283367205 type Work @default.
- W4283367205 citedByCount "1" @default.
- W4283367205 countsByYear W42833672052023 @default.
- W4283367205 crossrefType "journal-article" @default.
- W4283367205 hasAuthorship W4283367205A5000722591 @default.
- W4283367205 hasAuthorship W4283367205A5002182441 @default.
- W4283367205 hasAuthorship W4283367205A5055827124 @default.
- W4283367205 hasAuthorship W4283367205A5063366604 @default.
- W4283367205 hasAuthorship W4283367205A5075633775 @default.
- W4283367205 hasAuthorship W4283367205A5081593305 @default.
- W4283367205 hasConcept C105795698 @default.
- W4283367205 hasConcept C113196181 @default.
- W4283367205 hasConcept C119857082 @default.
- W4283367205 hasConcept C127413603 @default.
- W4283367205 hasConcept C139945424 @default.
- W4283367205 hasConcept C154945302 @default.
- W4283367205 hasConcept C179717631 @default.
- W4283367205 hasConcept C185592680 @default.
- W4283367205 hasConcept C192562407 @default.
- W4283367205 hasConcept C21880701 @default.
- W4283367205 hasConcept C33923547 @default.
- W4283367205 hasConcept C41008148 @default.
- W4283367205 hasConcept C43617362 @default.
- W4283367205 hasConcept C44838205 @default.
- W4283367205 hasConcept C50644808 @default.
- W4283367205 hasConcept C60908668 @default.
- W4283367205 hasConcept C76155785 @default.
- W4283367205 hasConceptScore W4283367205C105795698 @default.
- W4283367205 hasConceptScore W4283367205C113196181 @default.
- W4283367205 hasConceptScore W4283367205C119857082 @default.
- W4283367205 hasConceptScore W4283367205C127413603 @default.
- W4283367205 hasConceptScore W4283367205C139945424 @default.
- W4283367205 hasConceptScore W4283367205C154945302 @default.
- W4283367205 hasConceptScore W4283367205C179717631 @default.
- W4283367205 hasConceptScore W4283367205C185592680 @default.
- W4283367205 hasConceptScore W4283367205C192562407 @default.
- W4283367205 hasConceptScore W4283367205C21880701 @default.
- W4283367205 hasConceptScore W4283367205C33923547 @default.
- W4283367205 hasConceptScore W4283367205C41008148 @default.
- W4283367205 hasConceptScore W4283367205C43617362 @default.
- W4283367205 hasConceptScore W4283367205C44838205 @default.
- W4283367205 hasConceptScore W4283367205C50644808 @default.