Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283368635> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4283368635 endingPage "43" @default.
- W4283368635 startingPage "33" @default.
- W4283368635 abstract "Visual question answering (VQA) in surgery is largely unexplored. Expert surgeons are scarce and are often overloaded with clinical and academic workloads. This overload often limits their time answering questionnaires from patients, medical students or junior residents related to surgical procedures. At times, students and junior residents also refrain from asking too many questions during classes to reduce disruption. While computer-aided simulators and recording of past surgical procedures have been made available for them to observe and improve their skills, they still hugely rely on medical experts to answer their questions. Having a Surgical-VQA system as a reliable ‘second opinion’ could act as a backup and ease the load on the medical experts in answering these questions. The lack of annotated medical data and the presence of domain-specific terms has limited the exploration of VQA for surgical procedures. In this work, we design a Surgical-VQA task that answers questionnaires on surgical procedures based on the surgical scene. Extending the MICCAI endoscopic vision challenge 2018 dataset and workflow recognition dataset further, we introduce two Surgical-VQA datasets with classification and sentence-based answers. To perform Surgical-VQA, we employ vision-text transformers models. We further introduce a residual MLP-based VisualBert encoder model that enforces interaction between visual and text tokens, improving performance in classification-based answering. Furthermore, we study the influence of the number of input image patches and temporal visual features on the model performance in both classification and sentence-based answering." @default.
- W4283368635 created "2022-06-25" @default.
- W4283368635 creator A5040765329 @default.
- W4283368635 creator A5059796517 @default.
- W4283368635 creator A5066653567 @default.
- W4283368635 creator A5080733588 @default.
- W4283368635 date "2022-01-01" @default.
- W4283368635 modified "2023-10-18" @default.
- W4283368635 title "Surgical-VQA: Visual Question Answering in Surgical Scenes Using Transformer" @default.
- W4283368635 cites W1497418405 @default.
- W4283368635 cites W1956340063 @default.
- W4283368635 cites W1982260952 @default.
- W4283368635 cites W2072616512 @default.
- W4283368635 cites W2101105183 @default.
- W4283368635 cites W2108598243 @default.
- W4283368635 cites W2113416272 @default.
- W4283368635 cites W2194775991 @default.
- W4283368635 cites W2266464013 @default.
- W4283368635 cites W2482573101 @default.
- W4283368635 cites W2963616706 @default.
- W4283368635 cites W2963620441 @default.
- W4283368635 cites W3034655362 @default.
- W4283368635 cites W3094926883 @default.
- W4283368635 cites W3118577024 @default.
- W4283368635 cites W3135705837 @default.
- W4283368635 cites W3141200244 @default.
- W4283368635 cites W3163465952 @default.
- W4283368635 cites W3198730297 @default.
- W4283368635 cites W3201068857 @default.
- W4283368635 cites W4210528082 @default.
- W4283368635 doi "https://doi.org/10.1007/978-3-031-16449-1_4" @default.
- W4283368635 hasPublicationYear "2022" @default.
- W4283368635 type Work @default.
- W4283368635 citedByCount "5" @default.
- W4283368635 countsByYear W42833686352023 @default.
- W4283368635 crossrefType "book-chapter" @default.
- W4283368635 hasAuthorship W4283368635A5040765329 @default.
- W4283368635 hasAuthorship W4283368635A5059796517 @default.
- W4283368635 hasAuthorship W4283368635A5066653567 @default.
- W4283368635 hasAuthorship W4283368635A5080733588 @default.
- W4283368635 hasBestOaLocation W42833686352 @default.
- W4283368635 hasConcept C121332964 @default.
- W4283368635 hasConcept C154945302 @default.
- W4283368635 hasConcept C165801399 @default.
- W4283368635 hasConcept C177212765 @default.
- W4283368635 hasConcept C23123220 @default.
- W4283368635 hasConcept C2777530160 @default.
- W4283368635 hasConcept C2780945871 @default.
- W4283368635 hasConcept C41008148 @default.
- W4283368635 hasConcept C44291984 @default.
- W4283368635 hasConcept C62520636 @default.
- W4283368635 hasConcept C66322947 @default.
- W4283368635 hasConcept C77088390 @default.
- W4283368635 hasConceptScore W4283368635C121332964 @default.
- W4283368635 hasConceptScore W4283368635C154945302 @default.
- W4283368635 hasConceptScore W4283368635C165801399 @default.
- W4283368635 hasConceptScore W4283368635C177212765 @default.
- W4283368635 hasConceptScore W4283368635C23123220 @default.
- W4283368635 hasConceptScore W4283368635C2777530160 @default.
- W4283368635 hasConceptScore W4283368635C2780945871 @default.
- W4283368635 hasConceptScore W4283368635C41008148 @default.
- W4283368635 hasConceptScore W4283368635C44291984 @default.
- W4283368635 hasConceptScore W4283368635C62520636 @default.
- W4283368635 hasConceptScore W4283368635C66322947 @default.
- W4283368635 hasConceptScore W4283368635C77088390 @default.
- W4283368635 hasLocation W42833686351 @default.
- W4283368635 hasLocation W42833686352 @default.
- W4283368635 hasOpenAccess W4283368635 @default.
- W4283368635 hasPrimaryLocation W42833686351 @default.
- W4283368635 hasRelatedWork W1602056621 @default.
- W4283368635 hasRelatedWork W1602736231 @default.
- W4283368635 hasRelatedWork W2035950535 @default.
- W4283368635 hasRelatedWork W2118091901 @default.
- W4283368635 hasRelatedWork W2135033253 @default.
- W4283368635 hasRelatedWork W2138279922 @default.
- W4283368635 hasRelatedWork W2170954447 @default.
- W4283368635 hasRelatedWork W2366644548 @default.
- W4283368635 hasRelatedWork W2574393591 @default.
- W4283368635 hasRelatedWork W3034169179 @default.
- W4283368635 isParatext "false" @default.
- W4283368635 isRetracted "false" @default.
- W4283368635 workType "book-chapter" @default.