Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283373333> ?p ?o ?g. }
- W4283373333 endingPage "3010" @default.
- W4283373333 startingPage "3010" @default.
- W4283373333 abstract "Visual SLAM (VSLAM) has been developing rapidly due to its advantages of low-cost sensors, the easy fusion of other sensors, and richer environmental information. Traditional visionbased SLAM research has made many achievements, but it may fail to achieve wished results in challenging environments. Deep learning has promoted the development of computer vision, and the combination of deep learning and SLAM has attracted more and more attention. Semantic information, as high-level environmental information, can enable robots to better understand the surrounding environment. This paper introduces the development of VSLAM technology from two aspects: traditional VSLAM and semantic VSLAM combined with deep learning. For traditional VSLAM, we summarize the advantages and disadvantages of indirect and direct methods in detail and give some classical VSLAM open-source algorithms. In addition, we focus on the development of semantic VSLAM based on deep learning. Starting with typical neural networks CNN and RNN, we summarize the improvement of neural networks for the VSLAM system in detail. Later, we focus on the help of target detection and semantic segmentation for VSLAM semantic information introduction. We believe that the development of the future intelligent era cannot be without the help of semantic technology. Introducing deep learning into the VSLAM system to provide semantic information can help robots better perceive the surrounding environment and provide people with higher-level help." @default.
- W4283373333 created "2022-06-25" @default.
- W4283373333 creator A5016630401 @default.
- W4283373333 creator A5021541639 @default.
- W4283373333 creator A5023252493 @default.
- W4283373333 creator A5037077055 @default.
- W4283373333 creator A5047401753 @default.
- W4283373333 creator A5048147842 @default.
- W4283373333 creator A5048675276 @default.
- W4283373333 creator A5055171418 @default.
- W4283373333 date "2022-06-23" @default.
- W4283373333 modified "2023-10-17" @default.
- W4283373333 title "An Overview on Visual SLAM: From Tradition to Semantic" @default.
- W4283373333 cites W1532362218 @default.
- W4283373333 cites W1536680647 @default.
- W4283373333 cites W1661995841 @default.
- W4283373333 cites W1901129140 @default.
- W4283373333 cites W1903029394 @default.
- W4283373333 cites W1951265541 @default.
- W4283373333 cites W1970504153 @default.
- W4283373333 cites W1987648924 @default.
- W4283373333 cites W1989310712 @default.
- W4283373333 cites W1989484209 @default.
- W4283373333 cites W1990012555 @default.
- W4283373333 cites W2049207102 @default.
- W4283373333 cites W2069479606 @default.
- W4283373333 cites W2091790851 @default.
- W4283373333 cites W2102605133 @default.
- W4283373333 cites W2108134361 @default.
- W4283373333 cites W2115499947 @default.
- W4283373333 cites W2117228865 @default.
- W4283373333 cites W2118223742 @default.
- W4283373333 cites W2118830119 @default.
- W4283373333 cites W2119605622 @default.
- W4283373333 cites W2123277060 @default.
- W4283373333 cites W2126842639 @default.
- W4283373333 cites W2130103520 @default.
- W4283373333 cites W2130422193 @default.
- W4283373333 cites W2151103935 @default.
- W4283373333 cites W2152671441 @default.
- W4283373333 cites W2160072137 @default.
- W4283373333 cites W2167214832 @default.
- W4283373333 cites W2167687475 @default.
- W4283373333 cites W2198527813 @default.
- W4283373333 cites W2216125271 @default.
- W4283373333 cites W2290577462 @default.
- W4283373333 cites W2300779272 @default.
- W4283373333 cites W2336961836 @default.
- W4283373333 cites W2411093439 @default.
- W4283373333 cites W2470820246 @default.
- W4283373333 cites W2474281075 @default.
- W4283373333 cites W2505477118 @default.
- W4283373333 cites W2517090573 @default.
- W4283373333 cites W2520707372 @default.
- W4283373333 cites W2523049145 @default.
- W4283373333 cites W2527142681 @default.
- W4283373333 cites W2560023338 @default.
- W4283373333 cites W2562628086 @default.
- W4283373333 cites W2565472677 @default.
- W4283373333 cites W2598706937 @default.
- W4283373333 cites W2605300539 @default.
- W4283373333 cites W2606794968 @default.
- W4283373333 cites W2619522967 @default.
- W4283373333 cites W2621274416 @default.
- W4283373333 cites W2738596250 @default.
- W4283373333 cites W2739423245 @default.
- W4283373333 cites W2744724495 @default.
- W4283373333 cites W2745549613 @default.
- W4283373333 cites W2745859992 @default.
- W4283373333 cites W2750632489 @default.
- W4283373333 cites W2765767940 @default.
- W4283373333 cites W2766177748 @default.
- W4283373333 cites W2789218862 @default.
- W4283373333 cites W2802671577 @default.
- W4283373333 cites W2808517719 @default.
- W4283373333 cites W2830339951 @default.
- W4283373333 cites W2884962765 @default.
- W4283373333 cites W2888144883 @default.
- W4283373333 cites W2888816914 @default.
- W4283373333 cites W2890090517 @default.
- W4283373333 cites W2891299851 @default.
- W4283373333 cites W2895745202 @default.
- W4283373333 cites W2897828525 @default.
- W4283373333 cites W2919203733 @default.
- W4283373333 cites W2925142855 @default.
- W4283373333 cites W2940765493 @default.
- W4283373333 cites W2945356051 @default.
- W4283373333 cites W2950989657 @default.
- W4283373333 cites W2952348863 @default.
- W4283373333 cites W2954061742 @default.
- W4283373333 cites W2963037989 @default.
- W4283373333 cites W2963200201 @default.
- W4283373333 cites W2963632154 @default.
- W4283373333 cites W2963706662 @default.
- W4283373333 cites W2963713713 @default.
- W4283373333 cites W2963881378 @default.
- W4283373333 cites W2964314455 @default.
- W4283373333 cites W2964349441 @default.