Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283378879> ?p ?o ?g. }
- W4283378879 endingPage "2187" @default.
- W4283378879 startingPage "2187" @default.
- W4283378879 abstract "Prediction problems in timed datasets related to human activities are especially difficult to solve, because of the specific characteristics and the scarce number of predictive (input) variables available to tackle these problems. In this paper, we try to find out whether Machine Learning (ML) approaches can be successfully applied to these problems. We deal with timed datasets with human activity patterns, in which the input variables are exclusively related to the day or type of day when the prediction is carried out and, usually, to the meteorology of those days. These problems with a marked human activity pattern frequently appear in mobility and traffic-related problems, delivery prediction (packets, food), and many other activities, usually in cities. We evaluate the performance in these problems of different ML methods such as artificial neural networks (multi-layer perceptrons, extreme learning machines) and support vector regression algorithms, together with an Analogue-type (KNN) approach, which serves as a baseline algorithm and provides information about when it is expected that ML approaches will fail, by looking for similar situations in the past. The considered ML algorithms are evaluated in four real prediction problems with human activity patterns, such as school absences, bike-sharing demand, parking occupation, and packets delivered in a post office. The results obtained show the good performance of the ML algorithms, revealing that they can deal with scarce information in all the problems considered. The results obtained have also revealed the importance of including meteorology as the input variables, showing that meteorology is frequently behind demand peaks or valleys in this kind of problem. Finally, we show that having a number of similar situations in the past (training set) prevents ML algorithms from making important mistakes in the prediction obtained." @default.
- W4283378879 created "2022-06-25" @default.
- W4283378879 creator A5006062781 @default.
- W4283378879 creator A5031022520 @default.
- W4283378879 creator A5035776970 @default.
- W4283378879 creator A5040465945 @default.
- W4283378879 creator A5060780612 @default.
- W4283378879 creator A5073509546 @default.
- W4283378879 date "2022-06-23" @default.
- W4283378879 modified "2023-10-18" @default.
- W4283378879 title "Analysis of Machine Learning Approaches’ Performance in Prediction Problems with Human Activity Patterns" @default.
- W4283378879 cites W1498436455 @default.
- W4283378879 cites W1551447947 @default.
- W4283378879 cites W1770071703 @default.
- W4283378879 cites W1964357740 @default.
- W4283378879 cites W2008526771 @default.
- W4283378879 cites W2047005369 @default.
- W4283378879 cites W2069563189 @default.
- W4283378879 cites W2088722350 @default.
- W4283378879 cites W2111072639 @default.
- W4283378879 cites W2155482699 @default.
- W4283378879 cites W2170860720 @default.
- W4283378879 cites W2174601942 @default.
- W4283378879 cites W2476574195 @default.
- W4283378879 cites W2770265759 @default.
- W4283378879 cites W2772972874 @default.
- W4283378879 cites W2789208874 @default.
- W4283378879 cites W2793542051 @default.
- W4283378879 cites W2794518829 @default.
- W4283378879 cites W2912610170 @default.
- W4283378879 cites W2949196821 @default.
- W4283378879 cites W3000228852 @default.
- W4283378879 cites W3005021926 @default.
- W4283378879 cites W3044087904 @default.
- W4283378879 cites W3099138075 @default.
- W4283378879 cites W3111322109 @default.
- W4283378879 cites W3155791720 @default.
- W4283378879 cites W3193404637 @default.
- W4283378879 cites W3204851142 @default.
- W4283378879 cites W4210758330 @default.
- W4283378879 cites W4214718096 @default.
- W4283378879 cites W4224318793 @default.
- W4283378879 cites W4229365340 @default.
- W4283378879 doi "https://doi.org/10.3390/math10132187" @default.
- W4283378879 hasPublicationYear "2022" @default.
- W4283378879 type Work @default.
- W4283378879 citedByCount "1" @default.
- W4283378879 countsByYear W42833788792023 @default.
- W4283378879 crossrefType "journal-article" @default.
- W4283378879 hasAuthorship W4283378879A5006062781 @default.
- W4283378879 hasAuthorship W4283378879A5031022520 @default.
- W4283378879 hasAuthorship W4283378879A5035776970 @default.
- W4283378879 hasAuthorship W4283378879A5040465945 @default.
- W4283378879 hasAuthorship W4283378879A5060780612 @default.
- W4283378879 hasAuthorship W4283378879A5073509546 @default.
- W4283378879 hasBestOaLocation W42833788791 @default.
- W4283378879 hasConcept C105795698 @default.
- W4283378879 hasConcept C111368507 @default.
- W4283378879 hasConcept C119857082 @default.
- W4283378879 hasConcept C12267149 @default.
- W4283378879 hasConcept C124101348 @default.
- W4283378879 hasConcept C12725497 @default.
- W4283378879 hasConcept C127313418 @default.
- W4283378879 hasConcept C154945302 @default.
- W4283378879 hasConcept C158379750 @default.
- W4283378879 hasConcept C2780150128 @default.
- W4283378879 hasConcept C31258907 @default.
- W4283378879 hasConcept C33923547 @default.
- W4283378879 hasConcept C41008148 @default.
- W4283378879 hasConcept C50644808 @default.
- W4283378879 hasConcept C60908668 @default.
- W4283378879 hasConcept C83546350 @default.
- W4283378879 hasConceptScore W4283378879C105795698 @default.
- W4283378879 hasConceptScore W4283378879C111368507 @default.
- W4283378879 hasConceptScore W4283378879C119857082 @default.
- W4283378879 hasConceptScore W4283378879C12267149 @default.
- W4283378879 hasConceptScore W4283378879C124101348 @default.
- W4283378879 hasConceptScore W4283378879C12725497 @default.
- W4283378879 hasConceptScore W4283378879C127313418 @default.
- W4283378879 hasConceptScore W4283378879C154945302 @default.
- W4283378879 hasConceptScore W4283378879C158379750 @default.
- W4283378879 hasConceptScore W4283378879C2780150128 @default.
- W4283378879 hasConceptScore W4283378879C31258907 @default.
- W4283378879 hasConceptScore W4283378879C33923547 @default.
- W4283378879 hasConceptScore W4283378879C41008148 @default.
- W4283378879 hasConceptScore W4283378879C50644808 @default.
- W4283378879 hasConceptScore W4283378879C60908668 @default.
- W4283378879 hasConceptScore W4283378879C83546350 @default.
- W4283378879 hasFunder F4320322930 @default.
- W4283378879 hasIssue "13" @default.
- W4283378879 hasLocation W42833788791 @default.
- W4283378879 hasOpenAccess W4283378879 @default.
- W4283378879 hasPrimaryLocation W42833788791 @default.
- W4283378879 hasRelatedWork W1525510058 @default.
- W4283378879 hasRelatedWork W1996541855 @default.
- W4283378879 hasRelatedWork W2188471147 @default.
- W4283378879 hasRelatedWork W2277768259 @default.
- W4283378879 hasRelatedWork W2735962158 @default.