Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283394322> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4283394322 abstract "Electricity load forecasting for buildings and campuses is becoming increasingly important as the penetration of distributed energy resources (DERs) grows. Efficient operation and dispatch of DERs require reasonably accurate predictions of future energy consumption in order to conduct near-real-time optimized dispatch of on-site generation and storage assets. Electric utilities have traditionally performed load forecasting for load pockets spanning large geographic areas, and therefore forecasting has not been a common practice by buildings and campus operators. Given the growing trends of research and prototyping in the grid-interactive efficient buildings domain, characteristics beyond simple algorithm forecast accuracy are important in determining the algorithm’s true utility for smart buildings. Other characteristics include the overall design of the deployed architecture and the operational efficiency of the forecasting system. In this work, we present a deep-learning-based load forecasting system that predicts the building load at 1-hour intervals for 18 hours in the future. We also discuss challenges associated with the real-time deployment of such systems as well as the research opportunities presented by a fully functional forecasting system that has been developed within the National Renewable Energy Laboratory’s Intelligent Campus program." @default.
- W4283394322 created "2022-06-25" @default.
- W4283394322 creator A5021659331 @default.
- W4283394322 creator A5043026057 @default.
- W4283394322 creator A5051870530 @default.
- W4283394322 creator A5052335741 @default.
- W4283394322 creator A5088478330 @default.
- W4283394322 date "2022-05-25" @default.
- W4283394322 modified "2023-09-27" @default.
- W4283394322 title "Deep-Learning-Based, Multi-Timescale Load Forecasting in Buildings: Opportunities and Challenges from Research to De-ployment" @default.
- W4283394322 doi "https://doi.org/10.36227/techrxiv.19808644" @default.
- W4283394322 hasPublicationYear "2022" @default.
- W4283394322 type Work @default.
- W4283394322 citedByCount "0" @default.
- W4283394322 crossrefType "posted-content" @default.
- W4283394322 hasAuthorship W4283394322A5021659331 @default.
- W4283394322 hasAuthorship W4283394322A5043026057 @default.
- W4283394322 hasAuthorship W4283394322A5051870530 @default.
- W4283394322 hasAuthorship W4283394322A5052335741 @default.
- W4283394322 hasAuthorship W4283394322A5088478330 @default.
- W4283394322 hasBestOaLocation W42833943221 @default.
- W4283394322 hasConcept C105339364 @default.
- W4283394322 hasConcept C111919701 @default.
- W4283394322 hasConcept C119599485 @default.
- W4283394322 hasConcept C121332964 @default.
- W4283394322 hasConcept C123657996 @default.
- W4283394322 hasConcept C127413603 @default.
- W4283394322 hasConcept C13736549 @default.
- W4283394322 hasConcept C142362112 @default.
- W4283394322 hasConcept C153349607 @default.
- W4283394322 hasConcept C165801399 @default.
- W4283394322 hasConcept C187691185 @default.
- W4283394322 hasConcept C188573790 @default.
- W4283394322 hasConcept C206658404 @default.
- W4283394322 hasConcept C2524010 @default.
- W4283394322 hasConcept C33923547 @default.
- W4283394322 hasConcept C41008148 @default.
- W4283394322 hasConcept C42475967 @default.
- W4283394322 hasConcept C77715397 @default.
- W4283394322 hasConcept C83931994 @default.
- W4283394322 hasConcept C97355855 @default.
- W4283394322 hasConceptScore W4283394322C105339364 @default.
- W4283394322 hasConceptScore W4283394322C111919701 @default.
- W4283394322 hasConceptScore W4283394322C119599485 @default.
- W4283394322 hasConceptScore W4283394322C121332964 @default.
- W4283394322 hasConceptScore W4283394322C123657996 @default.
- W4283394322 hasConceptScore W4283394322C127413603 @default.
- W4283394322 hasConceptScore W4283394322C13736549 @default.
- W4283394322 hasConceptScore W4283394322C142362112 @default.
- W4283394322 hasConceptScore W4283394322C153349607 @default.
- W4283394322 hasConceptScore W4283394322C165801399 @default.
- W4283394322 hasConceptScore W4283394322C187691185 @default.
- W4283394322 hasConceptScore W4283394322C188573790 @default.
- W4283394322 hasConceptScore W4283394322C206658404 @default.
- W4283394322 hasConceptScore W4283394322C2524010 @default.
- W4283394322 hasConceptScore W4283394322C33923547 @default.
- W4283394322 hasConceptScore W4283394322C41008148 @default.
- W4283394322 hasConceptScore W4283394322C42475967 @default.
- W4283394322 hasConceptScore W4283394322C77715397 @default.
- W4283394322 hasConceptScore W4283394322C83931994 @default.
- W4283394322 hasConceptScore W4283394322C97355855 @default.
- W4283394322 hasLocation W42833943221 @default.
- W4283394322 hasLocation W42833943222 @default.
- W4283394322 hasLocation W42833943223 @default.
- W4283394322 hasOpenAccess W4283394322 @default.
- W4283394322 hasPrimaryLocation W42833943221 @default.
- W4283394322 hasRelatedWork W1795204055 @default.
- W4283394322 hasRelatedWork W2017324924 @default.
- W4283394322 hasRelatedWork W2161964184 @default.
- W4283394322 hasRelatedWork W2188194713 @default.
- W4283394322 hasRelatedWork W2384083491 @default.
- W4283394322 hasRelatedWork W2745756234 @default.
- W4283394322 hasRelatedWork W4242576771 @default.
- W4283394322 hasRelatedWork W4283394322 @default.
- W4283394322 hasRelatedWork W4287690190 @default.
- W4283394322 hasRelatedWork W4366594562 @default.
- W4283394322 isParatext "false" @default.
- W4283394322 isRetracted "false" @default.
- W4283394322 workType "article" @default.