Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283395468> ?p ?o ?g. }
- W4283395468 abstract "Abstract Eyelid tumors accounts for 5–10% of skin tumors. It is important but difficult to identify malignant eyelid tumors from benign lesions in a cost-effective way. Traditional screening methods for malignancy in eyelid tumors require laborious and time-consuming histopathological process. Therefore, we aimed to develop a deep learning (DL)-based image analysis system for automatic identification of benign and malignant eyelid tumors. Using a common digital camera, we collected clinical images from patients who were histopathologically diagnosed with eyelid tumors. We trained 8 convolutional neural network (CNN) models to identify benign and malignant eyelid tumors, including ResNet-50, ResNet-101, InceptionV3, and InceptionResNetV2. Another group of patients with eyelid tumors were also collected as the prospective validation dataset. Performance of DL models and human clinicians in prospective validation dataset were evaluated and compared. A total of 309 images from 209 patients were used for training DL system, all eight models reached an average accuracy greater than 0.958 in the internal cross-validation. 36 images from 36 patients were included for the prospective validation, the models reached the best performance in accuracy, sensitivity, specificity, and area under curve (AUC) of 0.889 (95% CI 0.747–0.956), 0.933 (95% CI 0.702–0.988), 0.857 (95% CI 0.654–0.950), and 0.966 (95% CI 0.850–0.993), respectively. DL system had a similar performance as the senior ophthalmologists, and outreached the performance of junior ophthalmologists and medical students. DL system can identify benign and malignant tumors through common clinical images, with a better performance than most ophthalmologists. Combining DL system with smartphone may enable patients’ self-monitoring for eyelid tumors and assist in doctors’ clinical decision making." @default.
- W4283395468 created "2022-06-25" @default.
- W4283395468 creator A5003850660 @default.
- W4283395468 creator A5004831298 @default.
- W4283395468 creator A5025565133 @default.
- W4283395468 creator A5029754204 @default.
- W4283395468 creator A5033632697 @default.
- W4283395468 creator A5062665642 @default.
- W4283395468 creator A5075465277 @default.
- W4283395468 creator A5081493613 @default.
- W4283395468 creator A5085392390 @default.
- W4283395468 creator A5090903716 @default.
- W4283395468 date "2022-06-22" @default.
- W4283395468 modified "2023-09-30" @default.
- W4283395468 title "Noninvasive identification of Benign and malignant eyelid tumors using clinical images via deep learning system" @default.
- W4283395468 cites W1955857676 @default.
- W4283395468 cites W1959881579 @default.
- W4283395468 cites W2009579450 @default.
- W4283395468 cites W2010706346 @default.
- W4283395468 cites W2031585844 @default.
- W4283395468 cites W2038125828 @default.
- W4283395468 cites W2056890061 @default.
- W4283395468 cites W2074246295 @default.
- W4283395468 cites W2085645790 @default.
- W4283395468 cites W2094126296 @default.
- W4283395468 cites W2108598243 @default.
- W4283395468 cites W2141315020 @default.
- W4283395468 cites W2581082771 @default.
- W4283395468 cites W2751149650 @default.
- W4283395468 cites W2765711111 @default.
- W4283395468 cites W2886117326 @default.
- W4283395468 cites W2888387837 @default.
- W4283395468 cites W2908170048 @default.
- W4283395468 cites W2912621766 @default.
- W4283395468 cites W2925432231 @default.
- W4283395468 cites W2933739986 @default.
- W4283395468 cites W2941548848 @default.
- W4283395468 cites W2945626616 @default.
- W4283395468 cites W2950573215 @default.
- W4283395468 cites W2953396350 @default.
- W4283395468 cites W2957792382 @default.
- W4283395468 cites W2963258365 @default.
- W4283395468 cites W2967473922 @default.
- W4283395468 cites W2972981429 @default.
- W4283395468 cites W2974728874 @default.
- W4283395468 cites W2977190487 @default.
- W4283395468 cites W2980403674 @default.
- W4283395468 cites W2981421798 @default.
- W4283395468 cites W2999853165 @default.
- W4283395468 cites W3015771119 @default.
- W4283395468 cites W3027270940 @default.
- W4283395468 cites W3036298167 @default.
- W4283395468 cites W3046254018 @default.
- W4283395468 cites W3085870326 @default.
- W4283395468 cites W3097736779 @default.
- W4283395468 cites W3104180140 @default.
- W4283395468 cites W3122944786 @default.
- W4283395468 cites W3123751677 @default.
- W4283395468 cites W3127419420 @default.
- W4283395468 cites W3131881301 @default.
- W4283395468 cites W3140854437 @default.
- W4283395468 cites W3155650309 @default.
- W4283395468 cites W3163031036 @default.
- W4283395468 cites W3201480657 @default.
- W4283395468 cites W3213827430 @default.
- W4283395468 cites W3216105204 @default.
- W4283395468 cites W4214872722 @default.
- W4283395468 doi "https://doi.org/10.1186/s40537-022-00634-y" @default.
- W4283395468 hasPublicationYear "2022" @default.
- W4283395468 type Work @default.
- W4283395468 citedByCount "3" @default.
- W4283395468 countsByYear W42833954682023 @default.
- W4283395468 crossrefType "journal-article" @default.
- W4283395468 hasAuthorship W4283395468A5003850660 @default.
- W4283395468 hasAuthorship W4283395468A5004831298 @default.
- W4283395468 hasAuthorship W4283395468A5025565133 @default.
- W4283395468 hasAuthorship W4283395468A5029754204 @default.
- W4283395468 hasAuthorship W4283395468A5033632697 @default.
- W4283395468 hasAuthorship W4283395468A5062665642 @default.
- W4283395468 hasAuthorship W4283395468A5075465277 @default.
- W4283395468 hasAuthorship W4283395468A5081493613 @default.
- W4283395468 hasAuthorship W4283395468A5085392390 @default.
- W4283395468 hasAuthorship W4283395468A5090903716 @default.
- W4283395468 hasBestOaLocation W42833954681 @default.
- W4283395468 hasConcept C108583219 @default.
- W4283395468 hasConcept C126838900 @default.
- W4283395468 hasConcept C142724271 @default.
- W4283395468 hasConcept C154945302 @default.
- W4283395468 hasConcept C16005928 @default.
- W4283395468 hasConcept C188816634 @default.
- W4283395468 hasConcept C2779399171 @default.
- W4283395468 hasConcept C2781302119 @default.
- W4283395468 hasConcept C41008148 @default.
- W4283395468 hasConcept C71924100 @default.
- W4283395468 hasConcept C81363708 @default.
- W4283395468 hasConceptScore W4283395468C108583219 @default.
- W4283395468 hasConceptScore W4283395468C126838900 @default.
- W4283395468 hasConceptScore W4283395468C142724271 @default.
- W4283395468 hasConceptScore W4283395468C154945302 @default.
- W4283395468 hasConceptScore W4283395468C16005928 @default.