Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283447750> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4283447750 abstract "The exploration and combination of high-level features is crucial for many machine learning tasks. At the same time, we cannot ignore the different importance of high-level features. In traditional machine learning predictive models, analyzing and combining the original data and manually making these features will undoubtedly increase the complexity and cost of the system. The emergence of factorization machines can use the vector product to represent the interaction of features, and automatically learn features The combination of to get high-order feature interactions not only reduces the complexity of the system, but also increases the diversity of high-order features. We refer to the depth factorization machine (xDeepFM) to generate high-level feature interactions at the display mode and vector level, and The importance of different features is dynamically learned through the squeeze-incentive (SENET) mechanism, and different weights are used for interaction.Then, use the attention mechanism to extract the importance of the obtained high-order features and assign weights, and finally get the prediction classification through the fully connected layer. We further summarized these methods into a unified model, and named the model the Advanced Attention Depth Factorization Machine (AxDFM)." @default.
- W4283447750 created "2022-06-26" @default.
- W4283447750 creator A5037456697 @default.
- W4283447750 creator A5076615035 @default.
- W4283447750 creator A5089118559 @default.
- W4283447750 date "2022-04-09" @default.
- W4283447750 modified "2023-10-16" @default.
- W4283447750 title "AxDFM:Position Prediction System Based on the Importance of High-Order Features" @default.
- W4283447750 cites W179875071 @default.
- W4283447750 cites W2194775991 @default.
- W4283447750 cites W2295739661 @default.
- W4283447750 cites W2443960221 @default.
- W4283447750 cites W2790263849 @default.
- W4283447750 cites W3104067163 @default.
- W4283447750 cites W4249970585 @default.
- W4283447750 doi "https://doi.org/10.1145/3533050.3533065" @default.
- W4283447750 hasPublicationYear "2022" @default.
- W4283447750 type Work @default.
- W4283447750 citedByCount "1" @default.
- W4283447750 countsByYear W42834477502023 @default.
- W4283447750 crossrefType "proceedings-article" @default.
- W4283447750 hasAuthorship W4283447750A5037456697 @default.
- W4283447750 hasAuthorship W4283447750A5076615035 @default.
- W4283447750 hasAuthorship W4283447750A5089118559 @default.
- W4283447750 hasConcept C10138342 @default.
- W4283447750 hasConcept C111472728 @default.
- W4283447750 hasConcept C11413529 @default.
- W4283447750 hasConcept C119857082 @default.
- W4283447750 hasConcept C12267149 @default.
- W4283447750 hasConcept C138885662 @default.
- W4283447750 hasConcept C154945302 @default.
- W4283447750 hasConcept C162324750 @default.
- W4283447750 hasConcept C182306322 @default.
- W4283447750 hasConcept C187834632 @default.
- W4283447750 hasConcept C198082294 @default.
- W4283447750 hasConcept C2524010 @default.
- W4283447750 hasConcept C2776401178 @default.
- W4283447750 hasConcept C33923547 @default.
- W4283447750 hasConcept C41008148 @default.
- W4283447750 hasConcept C41895202 @default.
- W4283447750 hasConcept C83665646 @default.
- W4283447750 hasConcept C89611455 @default.
- W4283447750 hasConcept C90673727 @default.
- W4283447750 hasConceptScore W4283447750C10138342 @default.
- W4283447750 hasConceptScore W4283447750C111472728 @default.
- W4283447750 hasConceptScore W4283447750C11413529 @default.
- W4283447750 hasConceptScore W4283447750C119857082 @default.
- W4283447750 hasConceptScore W4283447750C12267149 @default.
- W4283447750 hasConceptScore W4283447750C138885662 @default.
- W4283447750 hasConceptScore W4283447750C154945302 @default.
- W4283447750 hasConceptScore W4283447750C162324750 @default.
- W4283447750 hasConceptScore W4283447750C182306322 @default.
- W4283447750 hasConceptScore W4283447750C187834632 @default.
- W4283447750 hasConceptScore W4283447750C198082294 @default.
- W4283447750 hasConceptScore W4283447750C2524010 @default.
- W4283447750 hasConceptScore W4283447750C2776401178 @default.
- W4283447750 hasConceptScore W4283447750C33923547 @default.
- W4283447750 hasConceptScore W4283447750C41008148 @default.
- W4283447750 hasConceptScore W4283447750C41895202 @default.
- W4283447750 hasConceptScore W4283447750C83665646 @default.
- W4283447750 hasConceptScore W4283447750C89611455 @default.
- W4283447750 hasConceptScore W4283447750C90673727 @default.
- W4283447750 hasLocation W42834477501 @default.
- W4283447750 hasOpenAccess W4283447750 @default.
- W4283447750 hasPrimaryLocation W42834477501 @default.
- W4283447750 hasRelatedWork W1487844459 @default.
- W4283447750 hasRelatedWork W1996541855 @default.
- W4283447750 hasRelatedWork W2001541796 @default.
- W4283447750 hasRelatedWork W2008870648 @default.
- W4283447750 hasRelatedWork W2153189372 @default.
- W4283447750 hasRelatedWork W2374776489 @default.
- W4283447750 hasRelatedWork W2374817041 @default.
- W4283447750 hasRelatedWork W2937631562 @default.
- W4283447750 hasRelatedWork W3195168932 @default.
- W4283447750 hasRelatedWork W2187500075 @default.
- W4283447750 isParatext "false" @default.
- W4283447750 isRetracted "false" @default.
- W4283447750 workType "article" @default.