Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283452783> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4283452783 endingPage "102809" @default.
- W4283452783 startingPage "102809" @default.
- W4283452783 abstract "Traditional malware detection methods based on static traffic characteristics and machine learning are hard to cope with the increasing number of APT malware variants. In order to alleviate this problem, this paper proposes a deep-learning-based malware classification approach that combines time sequence features and association rules features. This method uses the improved LSTM neural network structure named RESNET_LSTM and PARALLEL_LSTM to extract time sequence features of different protocol traffic. It also utilizes association analysis to generate quantitative rule features. Finally, we connect the time sequence feature vector and the quantization rule vector as input to deep learning models to detect malware traffic. We evaluated our proposed approach on a dataset consisting of malicious traffic generated by 57 types of malware and normal traffic. The experimental results demonstrate that the loss decline rate of PARALLEL_LSTM structure during the training phase is faster than that of the LSTM and RESNET_LSTM structures. When the RESNET_LSTM structure is used, the prediction accuracy is close to 100%, which is slightly higher than the other two structures. The accuracy of the detection methods proposed in this paper are all above 96%, while the accuracy of malware detection methods combined with static traffic characteristics and machine learning is about 85%." @default.
- W4283452783 created "2022-06-26" @default.
- W4283452783 creator A5013822484 @default.
- W4283452783 creator A5029715489 @default.
- W4283452783 creator A5044980866 @default.
- W4283452783 creator A5073859321 @default.
- W4283452783 creator A5075394107 @default.
- W4283452783 creator A5088661712 @default.
- W4283452783 date "2022-09-01" @default.
- W4283452783 modified "2023-10-14" @default.
- W4283452783 title "Uncovering APT malware traffic using deep learning combined with time sequence and association analysis" @default.
- W4283452783 cites W1936523258 @default.
- W4283452783 cites W1992705187 @default.
- W4283452783 cites W2016258134 @default.
- W4283452783 cites W2050885659 @default.
- W4283452783 cites W2159909072 @default.
- W4283452783 cites W2198623851 @default.
- W4283452783 cites W2408793237 @default.
- W4283452783 cites W2502187513 @default.
- W4283452783 cites W2737578512 @default.
- W4283452783 cites W2768793959 @default.
- W4283452783 cites W2921573932 @default.
- W4283452783 cites W3083012366 @default.
- W4283452783 cites W3102476541 @default.
- W4283452783 doi "https://doi.org/10.1016/j.cose.2022.102809" @default.
- W4283452783 hasPublicationYear "2022" @default.
- W4283452783 type Work @default.
- W4283452783 citedByCount "6" @default.
- W4283452783 countsByYear W42834527832022 @default.
- W4283452783 countsByYear W42834527832023 @default.
- W4283452783 crossrefType "journal-article" @default.
- W4283452783 hasAuthorship W4283452783A5013822484 @default.
- W4283452783 hasAuthorship W4283452783A5029715489 @default.
- W4283452783 hasAuthorship W4283452783A5044980866 @default.
- W4283452783 hasAuthorship W4283452783A5073859321 @default.
- W4283452783 hasAuthorship W4283452783A5075394107 @default.
- W4283452783 hasAuthorship W4283452783A5088661712 @default.
- W4283452783 hasConcept C108583219 @default.
- W4283452783 hasConcept C119857082 @default.
- W4283452783 hasConcept C12267149 @default.
- W4283452783 hasConcept C124101348 @default.
- W4283452783 hasConcept C153180895 @default.
- W4283452783 hasConcept C154945302 @default.
- W4283452783 hasConcept C2778112365 @default.
- W4283452783 hasConcept C38652104 @default.
- W4283452783 hasConcept C40567965 @default.
- W4283452783 hasConcept C41008148 @default.
- W4283452783 hasConcept C50644808 @default.
- W4283452783 hasConcept C541664917 @default.
- W4283452783 hasConcept C54355233 @default.
- W4283452783 hasConcept C86803240 @default.
- W4283452783 hasConceptScore W4283452783C108583219 @default.
- W4283452783 hasConceptScore W4283452783C119857082 @default.
- W4283452783 hasConceptScore W4283452783C12267149 @default.
- W4283452783 hasConceptScore W4283452783C124101348 @default.
- W4283452783 hasConceptScore W4283452783C153180895 @default.
- W4283452783 hasConceptScore W4283452783C154945302 @default.
- W4283452783 hasConceptScore W4283452783C2778112365 @default.
- W4283452783 hasConceptScore W4283452783C38652104 @default.
- W4283452783 hasConceptScore W4283452783C40567965 @default.
- W4283452783 hasConceptScore W4283452783C41008148 @default.
- W4283452783 hasConceptScore W4283452783C50644808 @default.
- W4283452783 hasConceptScore W4283452783C541664917 @default.
- W4283452783 hasConceptScore W4283452783C54355233 @default.
- W4283452783 hasConceptScore W4283452783C86803240 @default.
- W4283452783 hasFunder F4320321001 @default.
- W4283452783 hasFunder F4320335777 @default.
- W4283452783 hasFunder F4320336551 @default.
- W4283452783 hasLocation W42834527831 @default.
- W4283452783 hasOpenAccess W4283452783 @default.
- W4283452783 hasPrimaryLocation W42834527831 @default.
- W4283452783 hasRelatedWork W1500455187 @default.
- W4283452783 hasRelatedWork W1647056466 @default.
- W4283452783 hasRelatedWork W2049597952 @default.
- W4283452783 hasRelatedWork W2082819077 @default.
- W4283452783 hasRelatedWork W2137852660 @default.
- W4283452783 hasRelatedWork W2156017042 @default.
- W4283452783 hasRelatedWork W2165697379 @default.
- W4283452783 hasRelatedWork W2360214423 @default.
- W4283452783 hasRelatedWork W2513378678 @default.
- W4283452783 hasRelatedWork W2543665684 @default.
- W4283452783 hasVolume "120" @default.
- W4283452783 isParatext "false" @default.
- W4283452783 isRetracted "false" @default.
- W4283452783 workType "article" @default.