Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283462694> ?p ?o ?g. }
- W4283462694 abstract "Real neural system usually contains two types of neurons, i.e., excitatory neurons and inhibitory ones. Analytical and numerical interpretation of dynamics induced by different types of interactions among the neurons of two types is beneficial to understanding those physiological functions of the brain. Here, we articulate a model of noise-perturbed random neural networks containing both excitatory and inhibitory (E&I) populations. Particularly, both intra-correlatively and inter-independently connected neurons in two populations are taken into account, which is different from the most existing E&I models only considering the independently-connected neurons. By employing the typical mean-field theory, we obtain an equivalent system of two dimensions with an input of stationary Gaussian process. Investigating the stationary autocorrelation functions along the obtained system, we analytically find the parameters' conditions under which the synchronized behaviors between the two populations are sufficiently emergent. Taking the maximal Lyapunov exponent as an index, we also find different critical values of the coupling strength coefficients for the chaotic excitatory neurons and for the chaotic inhibitory ones. Interestingly, we reveal that the noise is able to suppress chaotic dynamics of the random neural networks having neurons in two populations, while an appropriate amount of correlation coefficient in intra-coupling strengths can enhance chaos occurrence. Finally, we also detect a previously-reported phenomenon where the parameters region corresponds to neither linearly stable nor chaotic dynamics; however, the size of the region area crucially depends on the populations' parameters." @default.
- W4283462694 created "2022-06-26" @default.
- W4283462694 creator A5045411384 @default.
- W4283462694 creator A5056708187 @default.
- W4283462694 date "2022-06-24" @default.
- W4283462694 modified "2023-10-02" @default.
- W4283462694 title "Complex Dynamics of Noise-Perturbed Excitatory-Inhibitory Neural Networks With Intra-Correlative and Inter-Independent Connections" @default.
- W4283462694 cites W1580052004 @default.
- W4283462694 cites W1582051163 @default.
- W4283462694 cites W1968495884 @default.
- W4283462694 cites W1976100257 @default.
- W4283462694 cites W1978864992 @default.
- W4283462694 cites W1983611358 @default.
- W4283462694 cites W1985392528 @default.
- W4283462694 cites W1988987688 @default.
- W4283462694 cites W1990056747 @default.
- W4283462694 cites W1991630689 @default.
- W4283462694 cites W1996503769 @default.
- W4283462694 cites W1997387342 @default.
- W4283462694 cites W1998727969 @default.
- W4283462694 cites W2000470900 @default.
- W4283462694 cites W2008284899 @default.
- W4283462694 cites W2027802883 @default.
- W4283462694 cites W2032689303 @default.
- W4283462694 cites W2034525416 @default.
- W4283462694 cites W2042489792 @default.
- W4283462694 cites W2046014611 @default.
- W4283462694 cites W2053684549 @default.
- W4283462694 cites W2054378532 @default.
- W4283462694 cites W2056347263 @default.
- W4283462694 cites W2060652909 @default.
- W4283462694 cites W2063361547 @default.
- W4283462694 cites W2065178468 @default.
- W4283462694 cites W2066678737 @default.
- W4283462694 cites W2066915495 @default.
- W4283462694 cites W2079329690 @default.
- W4283462694 cites W2087042989 @default.
- W4283462694 cites W2115354531 @default.
- W4283462694 cites W2116059849 @default.
- W4283462694 cites W2118706537 @default.
- W4283462694 cites W2125101096 @default.
- W4283462694 cites W2137761603 @default.
- W4283462694 cites W2155754335 @default.
- W4283462694 cites W2156566821 @default.
- W4283462694 cites W2157979498 @default.
- W4283462694 cites W2168248818 @default.
- W4283462694 cites W2171127896 @default.
- W4283462694 cites W2331219843 @default.
- W4283462694 cites W2384550918 @default.
- W4283462694 cites W2552324112 @default.
- W4283462694 cites W2726477448 @default.
- W4283462694 cites W2737218936 @default.
- W4283462694 cites W2949302013 @default.
- W4283462694 cites W2962731339 @default.
- W4283462694 cites W2962764995 @default.
- W4283462694 cites W2963560040 @default.
- W4283462694 cites W2971717760 @default.
- W4283462694 cites W2976146814 @default.
- W4283462694 cites W3007036880 @default.
- W4283462694 cites W3018692113 @default.
- W4283462694 cites W3035026779 @default.
- W4283462694 cites W3046304624 @default.
- W4283462694 cites W3098717203 @default.
- W4283462694 cites W3100077639 @default.
- W4283462694 cites W3100348861 @default.
- W4283462694 cites W3153322290 @default.
- W4283462694 cites W3175363535 @default.
- W4283462694 cites W3176240710 @default.
- W4283462694 cites W3196983861 @default.
- W4283462694 cites W4206182201 @default.
- W4283462694 cites W4212984156 @default.
- W4283462694 cites W4221144396 @default.
- W4283462694 cites W4230758538 @default.
- W4283462694 cites W4233477374 @default.
- W4283462694 cites W4234011924 @default.
- W4283462694 cites W4241278178 @default.
- W4283462694 doi "https://doi.org/10.3389/fphys.2022.915511" @default.
- W4283462694 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35812336" @default.
- W4283462694 hasPublicationYear "2022" @default.
- W4283462694 type Work @default.
- W4283462694 citedByCount "3" @default.
- W4283462694 countsByYear W42834626942023 @default.
- W4283462694 crossrefType "journal-article" @default.
- W4283462694 hasAuthorship W4283462694A5045411384 @default.
- W4283462694 hasAuthorship W4283462694A5056708187 @default.
- W4283462694 hasBestOaLocation W42834626941 @default.
- W4283462694 hasConcept C105795698 @default.
- W4283462694 hasConcept C112592302 @default.
- W4283462694 hasConcept C115961682 @default.
- W4283462694 hasConcept C121332964 @default.
- W4283462694 hasConcept C121864883 @default.
- W4283462694 hasConcept C127413603 @default.
- W4283462694 hasConcept C131584629 @default.
- W4283462694 hasConcept C154945302 @default.
- W4283462694 hasConcept C169760540 @default.
- W4283462694 hasConcept C17077164 @default.
- W4283462694 hasConcept C186060115 @default.
- W4283462694 hasConcept C191544260 @default.
- W4283462694 hasConcept C2775924081 @default.
- W4283462694 hasConcept C2777052490 @default.