Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283512869> ?p ?o ?g. }
- W4283512869 endingPage "175" @default.
- W4283512869 startingPage "154" @default.
- W4283512869 abstract "A reliable and efficient forecasting system can be used to warn the general public against the increasing PM2.5 concentration. This paper proposes a novel AdaBoost-ensemble technique based on a hybrid data preprocessing-analysis strategy, with the following contributions: (i) a new decomposition strategy is proposed based on the hybrid data preprocessing-analysis strategy, which combines the merits of two popular decomposition algorithms and has been proven to be a promising decomposition strategy; (ii) the long short-term memory (LSTM), as a powerful deep learning forecasting algorithm, is applied to individually forecast the decomposed components, which can effectively capture the long-short patterns of complex time series; and (iii) a novel AdaBoost-LSTM ensemble technique is then developed to integrate the individual forecasting results into the final forecasting results, which provides significant improvement to the forecasting performance. To evaluate the proposed model, a comprehensive and scientific assessment system with several evaluation criteria, comparison models, and experiments is designed. The experimental results indicate that our developed hybrid model considerably surpasses the compared models in terms of forecasting precision and statistical testing and that its excellent forecasting performance can guide in developing effective control measures to decrease environmental contamination and prevent the health issues caused by a high PM2.5 concentration." @default.
- W4283512869 created "2022-06-27" @default.
- W4283512869 creator A5018633751 @default.
- W4283512869 creator A5027224656 @default.
- W4283512869 creator A5042950219 @default.
- W4283512869 creator A5078558986 @default.
- W4283512869 date "2022-07-28" @default.
- W4283512869 modified "2023-10-17" @default.
- W4283512869 title "A new PM <sub>2.5</sub> concentration forecasting system based on AdaBoost‐ensemble system with deep learning approach" @default.
- W4283512869 cites W1967277852 @default.
- W4283512869 cites W1967333634 @default.
- W4283512869 cites W1972985055 @default.
- W4283512869 cites W1973048907 @default.
- W4283512869 cites W1993693968 @default.
- W4283512869 cites W2000982976 @default.
- W4283512869 cites W2007221293 @default.
- W4283512869 cites W2022993793 @default.
- W4283512869 cites W2037460094 @default.
- W4283512869 cites W2064675550 @default.
- W4283512869 cites W2077270156 @default.
- W4283512869 cites W2120390927 @default.
- W4283512869 cites W2130189616 @default.
- W4283512869 cites W2134918899 @default.
- W4283512869 cites W2289128632 @default.
- W4283512869 cites W2417021467 @default.
- W4283512869 cites W2509426069 @default.
- W4283512869 cites W2565536624 @default.
- W4283512869 cites W2593374428 @default.
- W4283512869 cites W2618823407 @default.
- W4283512869 cites W2619148070 @default.
- W4283512869 cites W2777889442 @default.
- W4283512869 cites W2884704880 @default.
- W4283512869 cites W2886344341 @default.
- W4283512869 cites W2899346540 @default.
- W4283512869 cites W2922791713 @default.
- W4283512869 cites W2936287033 @default.
- W4283512869 cites W2941673670 @default.
- W4283512869 cites W2963148318 @default.
- W4283512869 cites W2980260699 @default.
- W4283512869 cites W2981239948 @default.
- W4283512869 cites W2988665683 @default.
- W4283512869 cites W2989668089 @default.
- W4283512869 cites W2999700983 @default.
- W4283512869 cites W3034250795 @default.
- W4283512869 cites W3034981540 @default.
- W4283512869 cites W3047937490 @default.
- W4283512869 cites W3082758882 @default.
- W4283512869 cites W3084045086 @default.
- W4283512869 cites W4292671038 @default.
- W4283512869 doi "https://doi.org/10.1002/for.2883" @default.
- W4283512869 hasPublicationYear "2022" @default.
- W4283512869 type Work @default.
- W4283512869 citedByCount "2" @default.
- W4283512869 countsByYear W42835128692023 @default.
- W4283512869 crossrefType "journal-article" @default.
- W4283512869 hasAuthorship W4283512869A5018633751 @default.
- W4283512869 hasAuthorship W4283512869A5027224656 @default.
- W4283512869 hasAuthorship W4283512869A5042950219 @default.
- W4283512869 hasAuthorship W4283512869A5078558986 @default.
- W4283512869 hasConcept C10551718 @default.
- W4283512869 hasConcept C119857082 @default.
- W4283512869 hasConcept C119898033 @default.
- W4283512869 hasConcept C12267149 @default.
- W4283512869 hasConcept C124101348 @default.
- W4283512869 hasConcept C124681953 @default.
- W4283512869 hasConcept C141404830 @default.
- W4283512869 hasConcept C154945302 @default.
- W4283512869 hasConcept C18903297 @default.
- W4283512869 hasConcept C34736171 @default.
- W4283512869 hasConcept C41008148 @default.
- W4283512869 hasConcept C45942800 @default.
- W4283512869 hasConcept C86803240 @default.
- W4283512869 hasConceptScore W4283512869C10551718 @default.
- W4283512869 hasConceptScore W4283512869C119857082 @default.
- W4283512869 hasConceptScore W4283512869C119898033 @default.
- W4283512869 hasConceptScore W4283512869C12267149 @default.
- W4283512869 hasConceptScore W4283512869C124101348 @default.
- W4283512869 hasConceptScore W4283512869C124681953 @default.
- W4283512869 hasConceptScore W4283512869C141404830 @default.
- W4283512869 hasConceptScore W4283512869C154945302 @default.
- W4283512869 hasConceptScore W4283512869C18903297 @default.
- W4283512869 hasConceptScore W4283512869C34736171 @default.
- W4283512869 hasConceptScore W4283512869C41008148 @default.
- W4283512869 hasConceptScore W4283512869C45942800 @default.
- W4283512869 hasConceptScore W4283512869C86803240 @default.
- W4283512869 hasFunder F4320321001 @default.
- W4283512869 hasFunder F4320335787 @default.
- W4283512869 hasIssue "1" @default.
- W4283512869 hasLocation W42835128691 @default.
- W4283512869 hasOpenAccess W4283512869 @default.
- W4283512869 hasPrimaryLocation W42835128691 @default.
- W4283512869 hasRelatedWork W2536880014 @default.
- W4283512869 hasRelatedWork W3126015411 @default.
- W4283512869 hasRelatedWork W3170784702 @default.
- W4283512869 hasRelatedWork W4220785415 @default.
- W4283512869 hasRelatedWork W4282839226 @default.
- W4283512869 hasRelatedWork W4283512869 @default.
- W4283512869 hasRelatedWork W4285046548 @default.