Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283521870> ?p ?o ?g. }
- W4283521870 endingPage "155013292211075" @default.
- W4283521870 startingPage "155013292211075" @default.
- W4283521870 abstract "Accurate assessment of wet aggregate stability is critical in evaluating soil quality. However, a few general models are used to assess it. In this work, we use the support vector machine to evaluate wet aggregate stability and compare it with a benchmark model based on artificial neural networks. One hundred thirty-four soil samples from various land uses, such as crops, grasslands, and bare land are adopted to verify the effectiveness of the proposed method and confirm the valid input parameters. We select 107 samples for calibrating the prediction model and the rest for evaluation. Experiments show that organic carbon is the main control parameter of wet aggregate stability, although the most influential factors for different land use are various. Comparing the determination coefficient and the root mean square error, it proves that the support vector machine method is superior to the artificial neural network method. In addition, the relative importance analysis shows that contents of organic carbon, silt, and clay are the primary input parameters. Finally, the impact of land use and management types is evaluated." @default.
- W4283521870 created "2022-06-27" @default.
- W4283521870 creator A5014780967 @default.
- W4283521870 creator A5023372230 @default.
- W4283521870 creator A5054512949 @default.
- W4283521870 creator A5088297929 @default.
- W4283521870 date "2022-06-01" @default.
- W4283521870 modified "2023-09-25" @default.
- W4283521870 title "Wet aggregate stability modeling based on support vector machine in multiuse soils" @default.
- W4283521870 cites W1490038815 @default.
- W4283521870 cites W1964357740 @default.
- W4283521870 cites W2009247732 @default.
- W4283521870 cites W2012813180 @default.
- W4283521870 cites W2013931921 @default.
- W4283521870 cites W2015492583 @default.
- W4283521870 cites W2015602375 @default.
- W4283521870 cites W2033736018 @default.
- W4283521870 cites W2035563959 @default.
- W4283521870 cites W2044431496 @default.
- W4283521870 cites W2045333971 @default.
- W4283521870 cites W2074675436 @default.
- W4283521870 cites W2097314809 @default.
- W4283521870 cites W2148271835 @default.
- W4283521870 cites W2148574664 @default.
- W4283521870 cites W2168812600 @default.
- W4283521870 cites W2337347893 @default.
- W4283521870 cites W2338627515 @default.
- W4283521870 cites W2504410412 @default.
- W4283521870 cites W2528657986 @default.
- W4283521870 cites W2549976854 @default.
- W4283521870 cites W2550523894 @default.
- W4283521870 cites W2588219442 @default.
- W4283521870 cites W2617320525 @default.
- W4283521870 cites W2727623211 @default.
- W4283521870 cites W2792219229 @default.
- W4283521870 cites W2810666881 @default.
- W4283521870 cites W2994665917 @default.
- W4283521870 cites W3028546702 @default.
- W4283521870 cites W3042499215 @default.
- W4283521870 cites W3088581959 @default.
- W4283521870 cites W3097828555 @default.
- W4283521870 cites W3139008167 @default.
- W4283521870 cites W3139042865 @default.
- W4283521870 cites W3206624959 @default.
- W4283521870 cites W4235471610 @default.
- W4283521870 cites W4239510810 @default.
- W4283521870 cites W878685764 @default.
- W4283521870 doi "https://doi.org/10.1177/15501329221107573" @default.
- W4283521870 hasPublicationYear "2022" @default.
- W4283521870 type Work @default.
- W4283521870 citedByCount "1" @default.
- W4283521870 countsByYear W42835218702023 @default.
- W4283521870 crossrefType "journal-article" @default.
- W4283521870 hasAuthorship W4283521870A5014780967 @default.
- W4283521870 hasAuthorship W4283521870A5023372230 @default.
- W4283521870 hasAuthorship W4283521870A5054512949 @default.
- W4283521870 hasAuthorship W4283521870A5088297929 @default.
- W4283521870 hasBestOaLocation W42835218701 @default.
- W4283521870 hasConcept C105795698 @default.
- W4283521870 hasConcept C112972136 @default.
- W4283521870 hasConcept C119857082 @default.
- W4283521870 hasConcept C12267149 @default.
- W4283521870 hasConcept C127313418 @default.
- W4283521870 hasConcept C13280743 @default.
- W4283521870 hasConcept C139945424 @default.
- W4283521870 hasConcept C151730666 @default.
- W4283521870 hasConcept C159390177 @default.
- W4283521870 hasConcept C159750122 @default.
- W4283521870 hasConcept C159985019 @default.
- W4283521870 hasConcept C161222754 @default.
- W4283521870 hasConcept C185798385 @default.
- W4283521870 hasConcept C192562407 @default.
- W4283521870 hasConcept C33923547 @default.
- W4283521870 hasConcept C39432304 @default.
- W4283521870 hasConcept C41008148 @default.
- W4283521870 hasConcept C4679612 @default.
- W4283521870 hasConcept C50644808 @default.
- W4283521870 hasConceptScore W4283521870C105795698 @default.
- W4283521870 hasConceptScore W4283521870C112972136 @default.
- W4283521870 hasConceptScore W4283521870C119857082 @default.
- W4283521870 hasConceptScore W4283521870C12267149 @default.
- W4283521870 hasConceptScore W4283521870C127313418 @default.
- W4283521870 hasConceptScore W4283521870C13280743 @default.
- W4283521870 hasConceptScore W4283521870C139945424 @default.
- W4283521870 hasConceptScore W4283521870C151730666 @default.
- W4283521870 hasConceptScore W4283521870C159390177 @default.
- W4283521870 hasConceptScore W4283521870C159750122 @default.
- W4283521870 hasConceptScore W4283521870C159985019 @default.
- W4283521870 hasConceptScore W4283521870C161222754 @default.
- W4283521870 hasConceptScore W4283521870C185798385 @default.
- W4283521870 hasConceptScore W4283521870C192562407 @default.
- W4283521870 hasConceptScore W4283521870C33923547 @default.
- W4283521870 hasConceptScore W4283521870C39432304 @default.
- W4283521870 hasConceptScore W4283521870C41008148 @default.
- W4283521870 hasConceptScore W4283521870C4679612 @default.
- W4283521870 hasConceptScore W4283521870C50644808 @default.
- W4283521870 hasFunder F4320321001 @default.
- W4283521870 hasIssue "6" @default.