Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283526075> ?p ?o ?g. }
- W4283526075 endingPage "14" @default.
- W4283526075 startingPage "1" @default.
- W4283526075 abstract "Cancer has been found as a heterogeneous disease with various subtypes and aims to destroy the body’s normal cells abruptly. As a result, it is essential to detect and prognosis the distinct type of cancer since they may help cancer survivors with treatment in the early stage. It must also divide cancer patients into high- and low-risk groups. While realizing efficient detection of cancer is frequently a time-taking and exhausting task with the high possibility of pathologist errors and previous studies employed data mining and machine learning (ML) techniques to identify cancer, these strategies rely on handcrafted feature extraction techniques that result in incorrect classification. On the contrary, deep learning (DL) is robust in feature extraction and has recently been widely used for classification and detection purposes. This research implemented a novel hybrid AlexNet-gated recurrent unit (AlexNet-GRU) model for the lymph node (LN) breast cancer detection and classification. We have used a well-known Kaggle (PCam) data set to classify LN cancer samples. This study is tested and compared among three models: convolutional neural network GRU (CNN-GRU), CNN long short-term memory (CNN-LSTM), and the proposed AlexNet-GRU. The experimental results indicated that the performance metrics accuracy, precision, sensitivity, and specificity (99.50%, 98.10%, 98.90%, and 97.50) of the proposed model can reduce the pathologist errors that occur during the diagnosis process of incorrect classification and significantly better performance than CNN-GRU and CNN-LSTM models. The proposed model is compared with other recent ML/DL algorithms to analyze the model’s efficiency, which reveals that the proposed AlexNet-GRU model is computationally efficient. Also, the proposed model presents its superiority over state-of-the-art methods for LN breast cancer detection and classification." @default.
- W4283526075 created "2022-06-27" @default.
- W4283526075 creator A5016179949 @default.
- W4283526075 creator A5027909439 @default.
- W4283526075 creator A5036358030 @default.
- W4283526075 creator A5038737449 @default.
- W4283526075 creator A5039874680 @default.
- W4283526075 creator A5042119018 @default.
- W4283526075 creator A5060312858 @default.
- W4283526075 creator A5060423385 @default.
- W4283526075 creator A5061835682 @default.
- W4283526075 creator A5081777603 @default.
- W4283526075 date "2022-06-24" @default.
- W4283526075 modified "2023-10-01" @default.
- W4283526075 title "A Novel Hybrid Deep Learning Model for Metastatic Cancer Detection" @default.
- W4283526075 cites W1598068104 @default.
- W4283526075 cites W1915129189 @default.
- W4283526075 cites W2048701123 @default.
- W4283526075 cites W2091947792 @default.
- W4283526075 cites W2101771332 @default.
- W4283526075 cites W2111547563 @default.
- W4283526075 cites W2122227569 @default.
- W4283526075 cites W2126009609 @default.
- W4283526075 cites W2128767954 @default.
- W4283526075 cites W2135894269 @default.
- W4283526075 cites W2190746225 @default.
- W4283526075 cites W2311857205 @default.
- W4283526075 cites W2344480160 @default.
- W4283526075 cites W2345208860 @default.
- W4283526075 cites W2591669284 @default.
- W4283526075 cites W2765288370 @default.
- W4283526075 cites W2780099243 @default.
- W4283526075 cites W2784272016 @default.
- W4283526075 cites W2790953907 @default.
- W4283526075 cites W2792628126 @default.
- W4283526075 cites W2807103388 @default.
- W4283526075 cites W2808866466 @default.
- W4283526075 cites W2811123232 @default.
- W4283526075 cites W2883567318 @default.
- W4283526075 cites W2897821359 @default.
- W4283526075 cites W2900144270 @default.
- W4283526075 cites W2908052439 @default.
- W4283526075 cites W2962898707 @default.
- W4283526075 cites W2991603289 @default.
- W4283526075 cites W3035036961 @default.
- W4283526075 cites W3035403188 @default.
- W4283526075 cites W3035888744 @default.
- W4283526075 cites W3091883770 @default.
- W4283526075 cites W3118395273 @default.
- W4283526075 cites W3126601778 @default.
- W4283526075 cites W3139300154 @default.
- W4283526075 cites W3155361587 @default.
- W4283526075 cites W3163936961 @default.
- W4283526075 cites W3164721408 @default.
- W4283526075 cites W3184839167 @default.
- W4283526075 cites W3195475698 @default.
- W4283526075 cites W3205650096 @default.
- W4283526075 cites W3211833946 @default.
- W4283526075 cites W3213908433 @default.
- W4283526075 cites W4211169133 @default.
- W4283526075 cites W4214816089 @default.
- W4283526075 cites W4221028663 @default.
- W4283526075 cites W4226085896 @default.
- W4283526075 cites W4226313662 @default.
- W4283526075 cites W4386279396 @default.
- W4283526075 doi "https://doi.org/10.1155/2022/8141530" @default.
- W4283526075 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/35785076" @default.
- W4283526075 hasPublicationYear "2022" @default.
- W4283526075 type Work @default.
- W4283526075 citedByCount "26" @default.
- W4283526075 countsByYear W42835260752022 @default.
- W4283526075 countsByYear W42835260752023 @default.
- W4283526075 crossrefType "journal-article" @default.
- W4283526075 hasAuthorship W4283526075A5016179949 @default.
- W4283526075 hasAuthorship W4283526075A5027909439 @default.
- W4283526075 hasAuthorship W4283526075A5036358030 @default.
- W4283526075 hasAuthorship W4283526075A5038737449 @default.
- W4283526075 hasAuthorship W4283526075A5039874680 @default.
- W4283526075 hasAuthorship W4283526075A5042119018 @default.
- W4283526075 hasAuthorship W4283526075A5060312858 @default.
- W4283526075 hasAuthorship W4283526075A5060423385 @default.
- W4283526075 hasAuthorship W4283526075A5061835682 @default.
- W4283526075 hasAuthorship W4283526075A5081777603 @default.
- W4283526075 hasBestOaLocation W42835260751 @default.
- W4283526075 hasConcept C108583219 @default.
- W4283526075 hasConcept C119857082 @default.
- W4283526075 hasConcept C121608353 @default.
- W4283526075 hasConcept C126322002 @default.
- W4283526075 hasConcept C153180895 @default.
- W4283526075 hasConcept C154945302 @default.
- W4283526075 hasConcept C41008148 @default.
- W4283526075 hasConcept C52622490 @default.
- W4283526075 hasConcept C71924100 @default.
- W4283526075 hasConcept C81363708 @default.
- W4283526075 hasConceptScore W4283526075C108583219 @default.
- W4283526075 hasConceptScore W4283526075C119857082 @default.
- W4283526075 hasConceptScore W4283526075C121608353 @default.
- W4283526075 hasConceptScore W4283526075C126322002 @default.