Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283574120> ?p ?o ?g. }
- W4283574120 endingPage "52" @default.
- W4283574120 startingPage "47" @default.
- W4283574120 abstract "6G networks are expected to face the daunting task of providing support to a set of extremely diverse services, each more demanding than those of previous generation networks (e.g., holographic communications, unmanned mobility, etc.), while at the same time integrating non-terrestrial networks, incorporating new technologies, and supporting joint communication and sensing. The resulting network architecture, component interactions, and system dynamics are unprecedentedly complex, making human-only operation impossible, and thus calling for AI-based automation and configuration support. For this to happen, AI solutions need to be robust and interpretable, i.e., network engineers should trust the way AI operates and understand the logic behind its decisions. In this paper, we revise the current state of tools and methods that can make AI robust and explainable, shed light on challenges and open problems, and indicate potential future research directions." @default.
- W4283574120 created "2022-06-28" @default.
- W4283574120 creator A5010671018 @default.
- W4283574120 creator A5026117848 @default.
- W4283574120 creator A5057196170 @default.
- W4283574120 creator A5073807871 @default.
- W4283574120 date "2022-09-01" @default.
- W4283574120 modified "2023-10-16" @default.
- W4283574120 title "Toward native explainable and robust AI in 6G networks: Current state, challenges and road ahead" @default.
- W4283574120 cites W2752194699 @default.
- W4283574120 cites W2785373760 @default.
- W4283574120 cites W2962883549 @default.
- W4283574120 cites W2963123635 @default.
- W4283574120 cites W3011806746 @default.
- W4283574120 cites W3043963370 @default.
- W4283574120 cites W3045086480 @default.
- W4283574120 cites W3087902378 @default.
- W4283574120 cites W3096425977 @default.
- W4283574120 cites W3109598403 @default.
- W4283574120 cites W3123482879 @default.
- W4283574120 cites W3144404977 @default.
- W4283574120 cites W3161569236 @default.
- W4283574120 cites W3190402799 @default.
- W4283574120 cites W3192885377 @default.
- W4283574120 cites W3194346160 @default.
- W4283574120 cites W3204683753 @default.
- W4283574120 cites W4211198362 @default.
- W4283574120 cites W4220993791 @default.
- W4283574120 cites W4283214572 @default.
- W4283574120 doi "https://doi.org/10.1016/j.comcom.2022.06.036" @default.
- W4283574120 hasPublicationYear "2022" @default.
- W4283574120 type Work @default.
- W4283574120 citedByCount "4" @default.
- W4283574120 countsByYear W42835741202023 @default.
- W4283574120 crossrefType "journal-article" @default.
- W4283574120 hasAuthorship W4283574120A5010671018 @default.
- W4283574120 hasAuthorship W4283574120A5026117848 @default.
- W4283574120 hasAuthorship W4283574120A5057196170 @default.
- W4283574120 hasAuthorship W4283574120A5073807871 @default.
- W4283574120 hasBestOaLocation W42835741202 @default.
- W4283574120 hasConcept C107457646 @default.
- W4283574120 hasConcept C11413529 @default.
- W4283574120 hasConcept C115901376 @default.
- W4283574120 hasConcept C120314980 @default.
- W4283574120 hasConcept C123657996 @default.
- W4283574120 hasConcept C127413603 @default.
- W4283574120 hasConcept C142362112 @default.
- W4283574120 hasConcept C144024400 @default.
- W4283574120 hasConcept C153349607 @default.
- W4283574120 hasConcept C154945302 @default.
- W4283574120 hasConcept C177264268 @default.
- W4283574120 hasConcept C192126672 @default.
- W4283574120 hasConcept C199360897 @default.
- W4283574120 hasConcept C201995342 @default.
- W4283574120 hasConcept C2522767166 @default.
- W4283574120 hasConcept C2779304628 @default.
- W4283574120 hasConcept C2780451532 @default.
- W4283574120 hasConcept C36289849 @default.
- W4283574120 hasConcept C41008148 @default.
- W4283574120 hasConcept C48103436 @default.
- W4283574120 hasConcept C76155785 @default.
- W4283574120 hasConcept C78519656 @default.
- W4283574120 hasConceptScore W4283574120C107457646 @default.
- W4283574120 hasConceptScore W4283574120C11413529 @default.
- W4283574120 hasConceptScore W4283574120C115901376 @default.
- W4283574120 hasConceptScore W4283574120C120314980 @default.
- W4283574120 hasConceptScore W4283574120C123657996 @default.
- W4283574120 hasConceptScore W4283574120C127413603 @default.
- W4283574120 hasConceptScore W4283574120C142362112 @default.
- W4283574120 hasConceptScore W4283574120C144024400 @default.
- W4283574120 hasConceptScore W4283574120C153349607 @default.
- W4283574120 hasConceptScore W4283574120C154945302 @default.
- W4283574120 hasConceptScore W4283574120C177264268 @default.
- W4283574120 hasConceptScore W4283574120C192126672 @default.
- W4283574120 hasConceptScore W4283574120C199360897 @default.
- W4283574120 hasConceptScore W4283574120C201995342 @default.
- W4283574120 hasConceptScore W4283574120C2522767166 @default.
- W4283574120 hasConceptScore W4283574120C2779304628 @default.
- W4283574120 hasConceptScore W4283574120C2780451532 @default.
- W4283574120 hasConceptScore W4283574120C36289849 @default.
- W4283574120 hasConceptScore W4283574120C41008148 @default.
- W4283574120 hasConceptScore W4283574120C48103436 @default.
- W4283574120 hasConceptScore W4283574120C76155785 @default.
- W4283574120 hasConceptScore W4283574120C78519656 @default.
- W4283574120 hasLocation W42835741201 @default.
- W4283574120 hasLocation W42835741202 @default.
- W4283574120 hasOpenAccess W4283574120 @default.
- W4283574120 hasPrimaryLocation W42835741201 @default.
- W4283574120 hasRelatedWork W1826068234 @default.
- W4283574120 hasRelatedWork W2125452230 @default.
- W4283574120 hasRelatedWork W2148444631 @default.
- W4283574120 hasRelatedWork W2155740880 @default.
- W4283574120 hasRelatedWork W2218202131 @default.
- W4283574120 hasRelatedWork W2519676117 @default.
- W4283574120 hasRelatedWork W3112082055 @default.
- W4283574120 hasRelatedWork W84108837 @default.
- W4283574120 hasRelatedWork W971421295 @default.
- W4283574120 hasRelatedWork W2185138819 @default.