Matches in SemOpenAlex for { <https://semopenalex.org/work/W4283575768> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4283575768 endingPage "119443" @default.
- W4283575768 startingPage "119443" @default.
- W4283575768 abstract "Renewable energy usage is continuing to increase as many countries worldwide are aiming to reach peak carbon emission and achieve carbon neutrality in the near future. One inherent problem with renewable energy is that its generation profile does not often fit well with the electricity usage profile. Therefore, it is of utmost importance that terminal users help to adjust the usage profile. Thermal energy storage (TES) systems have become an important means of adjusting the electricity usage profile of buildings. The operation strategy for TES must be carefully optimized to maximize its economic profile. To this end, we developed a framework for TES operation strategy optimization by integrating deep learning and physics-based modeling. The deep learning model, an attention-based dual-gated recurrent unit (A-dGRU) network, can learn the cooling load change trends from historical data and achieve state-of-the-art performance in hourly cooling load prediction for the next day with a coefficient of variation of the root mean square error of 0.08. For the TES modeling, we took the nonlinear change in the ice-charging rate into consideration based on the heat-transfer model; this change has often been ignored in previous studies. The high prediction accuracy and reliability of the TES model guarantee that the optimal strategy can be achieved by the framework. Compared to the basic TES operation strategy, we confirmed that the optimal operation strategy can further increase the cost savings by 11.2% for the entire ice-cooling season. In summary, the framework proposed in this study performs well in reducing the operation cost of a cooling plant based on the current electricity price tariff. The framework is expected to help the grid fit the electricity generation and usage profile." @default.
- W4283575768 created "2022-06-28" @default.
- W4283575768 creator A5007701465 @default.
- W4283575768 creator A5008909988 @default.
- W4283575768 creator A5014924378 @default.
- W4283575768 creator A5049263535 @default.
- W4283575768 date "2022-09-01" @default.
- W4283575768 modified "2023-10-18" @default.
- W4283575768 title "Deep learning and physics-based modeling for the optimization of ice-based thermal energy systems in cooling plants" @default.
- W4283575768 cites W1169076056 @default.
- W4283575768 cites W1965345917 @default.
- W4283575768 cites W1980242603 @default.
- W4283575768 cites W1995179969 @default.
- W4283575768 cites W2000803496 @default.
- W4283575768 cites W2014871558 @default.
- W4283575768 cites W2032765559 @default.
- W4283575768 cites W2033014702 @default.
- W4283575768 cites W2038978788 @default.
- W4283575768 cites W2053690261 @default.
- W4283575768 cites W2061434834 @default.
- W4283575768 cites W2064977675 @default.
- W4283575768 cites W2067396727 @default.
- W4283575768 cites W2072471874 @default.
- W4283575768 cites W2079250872 @default.
- W4283575768 cites W2109353146 @default.
- W4283575768 cites W2149775678 @default.
- W4283575768 cites W2163121678 @default.
- W4283575768 cites W2164709595 @default.
- W4283575768 cites W2500332241 @default.
- W4283575768 cites W2562947709 @default.
- W4283575768 cites W2595984151 @default.
- W4283575768 cites W2738725415 @default.
- W4283575768 cites W2744228549 @default.
- W4283575768 cites W2767524862 @default.
- W4283575768 cites W2903925216 @default.
- W4283575768 cites W2911804964 @default.
- W4283575768 cites W2922305091 @default.
- W4283575768 cites W2997351497 @default.
- W4283575768 cites W3008571545 @default.
- W4283575768 cites W3026124437 @default.
- W4283575768 cites W3041381827 @default.
- W4283575768 cites W3047106451 @default.
- W4283575768 cites W3090789943 @default.
- W4283575768 cites W3140040348 @default.
- W4283575768 cites W3167820934 @default.
- W4283575768 cites W3176033047 @default.
- W4283575768 cites W3193499139 @default.
- W4283575768 doi "https://doi.org/10.1016/j.apenergy.2022.119443" @default.
- W4283575768 hasPublicationYear "2022" @default.
- W4283575768 type Work @default.
- W4283575768 citedByCount "9" @default.
- W4283575768 countsByYear W42835757682022 @default.
- W4283575768 countsByYear W42835757682023 @default.
- W4283575768 crossrefType "journal-article" @default.
- W4283575768 hasAuthorship W4283575768A5007701465 @default.
- W4283575768 hasAuthorship W4283575768A5008909988 @default.
- W4283575768 hasAuthorship W4283575768A5014924378 @default.
- W4283575768 hasAuthorship W4283575768A5049263535 @default.
- W4283575768 hasConcept C119599485 @default.
- W4283575768 hasConcept C127413603 @default.
- W4283575768 hasConcept C13736549 @default.
- W4283575768 hasConcept C188573790 @default.
- W4283575768 hasConcept C206658404 @default.
- W4283575768 hasConcept C41008148 @default.
- W4283575768 hasConcept C44154836 @default.
- W4283575768 hasConceptScore W4283575768C119599485 @default.
- W4283575768 hasConceptScore W4283575768C127413603 @default.
- W4283575768 hasConceptScore W4283575768C13736549 @default.
- W4283575768 hasConceptScore W4283575768C188573790 @default.
- W4283575768 hasConceptScore W4283575768C206658404 @default.
- W4283575768 hasConceptScore W4283575768C41008148 @default.
- W4283575768 hasConceptScore W4283575768C44154836 @default.
- W4283575768 hasLocation W42835757681 @default.
- W4283575768 hasOpenAccess W4283575768 @default.
- W4283575768 hasPrimaryLocation W42835757681 @default.
- W4283575768 hasRelatedWork W1974014470 @default.
- W4283575768 hasRelatedWork W2004311206 @default.
- W4283575768 hasRelatedWork W2025793126 @default.
- W4283575768 hasRelatedWork W2164461700 @default.
- W4283575768 hasRelatedWork W2541826128 @default.
- W4283575768 hasRelatedWork W2563674362 @default.
- W4283575768 hasRelatedWork W2899084033 @default.
- W4283575768 hasRelatedWork W3028107337 @default.
- W4283575768 hasRelatedWork W3210815107 @default.
- W4283575768 hasRelatedWork W4382679550 @default.
- W4283575768 hasVolume "322" @default.
- W4283575768 isParatext "false" @default.
- W4283575768 isRetracted "false" @default.
- W4283575768 workType "article" @default.